implementation module Data.Set import StdClass, StdMisc, StdBool, StdList, StdFunc, StdInt, StdTuple import Data.Maybe //mapSet :: !(a -> b) !(Set a) -> Set b | < a & == a & < b & == b //mapSet f s = fromList (map f (toList s)) mapSetMonotonic :: !(a -> b) !(Set a) -> Set b mapSetMonotonic _ Tip = Tip mapSetMonotonic f (Bin n x l r) = Bin n (f x) (mapSetMonotonic f l) (mapSetMonotonic f r) //compare :: !a !a -> Ordering | < a & == a //compare x y = if (x < y) LT (if (x > y) GT EQ) :: Ordering = LT | GT | EQ compare x y :== if (x < y) LT (if (x > y) GT EQ) /* * Sets are size balanced trees. * A set of values @a@. */ :: Set a = Tip | Bin !Int !a !(Set a) !(Set a) instance == (Set a) | == a where (==) :: !(Set a) !(Set a) -> Bool | == a (==) t1 t2 = (size t1 == size t2) && (toAscList t1 == toAscList t2) instance < (Set a) | < a where (<) :: !(Set a) !(Set a) -> Bool | < a (<) s1 s2 = compare (toAscList s1) (toAscList s2) where compare :: ![a] ![a] -> Bool | < a compare [] [] = False compare [] _ = True compare [_:_] [] = False compare [a:as] [b:bs] | a < b = True | a > b = False | otherwise = compare as bs /*-------------------------------------------------------------------- * Query *--------------------------------------------------------------------*/ // | /O(1)/. Is this the empty set? //null :: !(Set a) -> Bool //null Tip = True //null (Bin _ _ _ _) = False // | /O(1)/. The number of elements in the set. //size s :== case s of //Tip -> 0 //(Bin sz _ _ _) -> sz // TODO Remove //size :: !(Set a) -> Int //size Tip = 0 //size (Bin sz _ _ _) = sz // | /O(log n)/. Is the element in the set? member :: !a !(Set a) -> Bool | < a & == a member x Tip = False member x (Bin _ y l r) = case compare x y of LT -> member x l GT -> member x r EQ -> True // | /O(log n)/. Is the element not in the set? //notMember :: !a !(Set a) -> Bool | < a & == a //notMember x t = not (member x t) /*-------------------------------------------------------------------- * Construction *--------------------------------------------------------------------*/ // | /O(1)/. The empty set. newSet :: Set a newSet = Tip // | /O(1)/. Create a singleton set. singleton :: !u:a -> w:(Set u:a), [w <= u] singleton x = Bin 1 x Tip Tip /*-------------------------------------------------------------------- * Insertion, Deletion *--------------------------------------------------------------------*/ // | /O(log n)/. Insert an element in a set. // If the set already contains an element equal to the given value, // it is replaced with the new value. insert :: !a !.(Set a) -> Set a | < a & == a insert x Tip = singleton x insert x (Bin sz y l r) = if (x < y) (balanceL y (insert x l) r) (if (x > y) (balanceR y l (insert x r)) (Bin sz x l r)) insertR :: !a !(Set a) -> Set a | < a & == a insertR x Tip = singleton x insertR x t=:(Bin _ y l r) = case compare x y of LT -> balanceL y (insertR x l) r GT -> balanceR y l (insertR x r) EQ -> t // | /O(log n)/. Delete an element from a set. delete :: !a !.(Set a) -> Set a | < a & == a delete x Tip = Tip delete x (Bin _ y l r) = case compare x y of LT -> balanceR y (delete x l) r GT -> balanceL y l (delete x r) EQ -> glue l r /*-------------------------------------------------------------------- * Subset *--------------------------------------------------------------------*/ // | /O(n+m)/. Is this a proper subset? (ie. a subset but not equal). //isProperSubsetOf :: !(Set a) !(Set a) -> Bool | < a & == a //isProperSubsetOf s1 s2 = (size s1 < size s2) && (isSubsetOf s1 s2) // | /O(n+m)/. Is this a subset? // @(s1 `isSubsetOf` s2)@ tells whether @s1@ is a subset of @s2@. //isSubsetOf :: !(Set a) !(Set a) -> Bool | < a & == a //isSubsetOf t1 t2 = (size t1 <= size t2) && (isSubsetOfX t1 t2) isSubsetOfX :: !(Set a) !(Set a) -> Bool | < a & == a isSubsetOfX Tip _ = True isSubsetOfX _ Tip = False isSubsetOfX (Bin _ x l r) t #! (lt, found, gt) = splitMember x t = found && isSubsetOfX l lt && isSubsetOfX r gt /*-------------------------------------------------------------------- * Minimal, Maximal *--------------------------------------------------------------------*/ // | /O(log n)/. The minimal element of a set. findMin :: !(Set a) -> a findMin (Bin _ x Tip _) = x findMin (Bin _ _ l _) = findMin l findMin Tip = abort "Set.findMin: empty set has no minimal element" // | /O(log n)/. The maximal element of a set. findMax :: !(Set a) -> a findMax (Bin _ x _ Tip) = x findMax (Bin _ _ _ r) = findMax r findMax Tip = abort "Set.findMax: empty set has no maximal element" // | /O(log n)/. Delete the minimal element. deleteMin :: !.(Set a) -> Set a deleteMin (Bin _ _ Tip r) = r deleteMin (Bin _ x l r) = balanceR x (deleteMin l) r deleteMin Tip = Tip // | /O(log n)/. Delete the maximal element. deleteMax :: !.(Set a) -> Set a deleteMax (Bin _ _ l Tip) = l deleteMax (Bin _ x l r) = balanceL x l (deleteMax r) deleteMax Tip = Tip /*-------------------------------------------------------------------- * Union. *--------------------------------------------------------------------*/ // | The union of a list of sets: (@'unions' == 'foldl' 'union' 'empty'@). //unions :: !u:[v:(Set a)] -> Set a | < a & == a, [u <= v] //unions ts = foldl union newSet ts // | /O(n+m)/. The union of two sets, preferring the first set when // equal elements are encountered. // The implementation uses the efficient /hedge-union/ algorithm. // Hedge-union is more efficient on (bigset `union` smallset). union :: !u:(Set a) !u:(Set a) -> Set a | < a & == a union Tip t2 = t2 union t1 Tip = t1 union t1 t2 = hedgeUnion NothingS NothingS t1 t2 hedgeUnion :: !(MaybeS a) !(MaybeS a) !(Set a) !(Set a) -> Set a | < a & == a hedgeUnion _ _ t1 Tip = t1 hedgeUnion blo bhi Tip (Bin _ x l r) = link x (filterGt blo l) (filterLt bhi r) hedgeUnion _ _ t1 (Bin _ x Tip Tip) = insertR x t1 hedgeUnion blo bhi (Bin _ x l r) t2 = link x (hedgeUnion blo bmi l (trim blo bmi t2)) (hedgeUnion bmi bhi r (trim bmi bhi t2)) where bmi = JustS x /*-------------------------------------------------------------------- * Difference *--------------------------------------------------------------------*/ // | /O(n+m)/. Difference of two sets. // The implementation uses an efficient /hedge/ algorithm comparable with /hedge-union/. difference :: !(Set a) !(Set a) -> Set a | < a & == a difference Tip _ = Tip difference t1 Tip = t1 difference t1 t2 = hedgeDiff NothingS NothingS t1 t2 hedgeDiff :: !(MaybeS a) !(MaybeS a) !(Set a) !(Set a) -> Set a | < a & == a hedgeDiff _ _ Tip _ = Tip hedgeDiff blo bhi (Bin _ x l r) Tip = link x (filterGt blo l) (filterLt bhi r) hedgeDiff blo bhi t (Bin _ x l r) = merge (hedgeDiff blo bmi (trim blo bmi t) l) (hedgeDiff bmi bhi (trim bmi bhi t) r) where bmi = JustS x /*-------------------------------------------------------------------- * Intersection *--------------------------------------------------------------------*/ intersections :: ![Set a] -> Set a | < a & == a intersections [t] = t intersections [t:ts] = foldl intersection t ts // | /O(n+m)/. The intersection of two sets. // Elements of the result come from the first set, so for example // // > import qualified Data.Set as S // > data AB = A | B deriving Show // > instance Ord AB where compare _ _ = EQ // > instance Eq AB where _ == _ = True // > main = print (S.singleton A `S.intersection` S.singleton B, // > S.singleton B `S.intersection` S.singleton A) // // prints @(fromList [A],fromList [B])@. intersection :: !(Set a) !(Set a) -> Set a | < a & == a intersection Tip _ = Tip intersection _ Tip = Tip intersection t1 t2 = hedgeInt NothingS NothingS t1 t2 hedgeInt :: !(MaybeS a) !(MaybeS a) !(Set a) !(Set a) -> Set a | < a & == a hedgeInt _ _ _ Tip = Tip hedgeInt _ _ Tip _ = Tip hedgeInt blo bhi (Bin _ x l r) t2 #! bmi = JustS x #! l` = hedgeInt blo bmi l (trim blo bmi t2) #! r` = hedgeInt bmi bhi r (trim bmi bhi t2) = if (member x t2) (link x l` r`) (merge l` r`) /*-------------------------------------------------------------------- * Filter and partition *--------------------------------------------------------------------*/ // | /O(n)/. Filter all elements that satisfy the predicate. filter :: !(a -> Bool) !(Set a) -> Set a | < a & == a filter _ Tip = Tip filter p (Bin _ x l r) | p x = link x (filter p l) (filter p r) | otherwise = merge (filter p l) (filter p r) // | /O(n)/. Partition the set into two sets, one with all elements that satisfy // the predicate and one with all elements that don't satisfy the predicate. // See also 'split'. partition :: !(a -> Bool) !(Set a) -> (!Set a, !Set a) | < a & == a partition _ Tip = (Tip,Tip) partition p (Bin _ x l r) #! (l1,l2) = partition p l #! (r1,r2) = partition p r | p x = (link x l1 r1,merge l2 r2) | otherwise = (merge l1 r1,link x l2 r2) /*-------------------------------------------------------------------- * Fold *--------------------------------------------------------------------*/ // | /O(n)/. Post-order fold. fold :: !(a -> .b -> .b) !.b !.(Set a) -> .b fold _ z Tip = z fold f z (Bin _ x l r) = fold f (f x (fold f z r)) l /*-------------------------------------------------------------------- * Lists *--------------------------------------------------------------------*/ // | /O(n)/. Convert the set to a list of elements. //toList :: !(Set a) -> [a] //toList s = toAscList s // | /O(n)/. Convert the set to an ascending list of elements. //toAscList :: !(Set a) -> [a] //toAscList t = fold (\a as -> [a:as]) [] t // | /O(n*log n)/. Create a set from a list of elements. fromList :: ![a] -> Set a | < a & == a fromList xs = foldl ins newSet xs where ins :: !(Set a) !a -> Set a | < a & == a ins t x = insert x t /*-------------------------------------------------------------------- Utility functions that return sub-ranges of the original tree. Some functions take a comparison function as argument to allow comparisons against infinite values. A function [cmplo x] should be read as [compare lo x]. [trim cmplo cmphi t] A tree that is either empty or where [cmplo x == LT] and [cmphi x == GT] for the value [x] of the root. [filterGt cmp t] A tree where for all values [k]. [cmp k == LT] [filterLt cmp t] A tree where for all values [k]. [cmp k == GT] [split k t] Returns two trees [l] and [r] where all values in [l] are <[k] and all keys in [r] are >[k]. [splitMember k t] Just like [split] but also returns whether [k] was found in the tree. --------------------------------------------------------------------*/ :: MaybeS a = NothingS | JustS !a /*-------------------------------------------------------------------- [trim lo hi t] trims away all subtrees that surely contain no values between the range [lo] to [hi]. The returned tree is either empty or the key of the root is between @lo@ and @hi@. --------------------------------------------------------------------*/ trim :: !(MaybeS a) !(MaybeS a) !(Set a) -> Set a | < a & == a trim NothingS NothingS t = t trim (JustS lx) NothingS t = greater lx t where greater lo (Bin _ x _ r) | x <= lo = greater lo r greater _ t` = t` trim NothingS (JustS hx) t = lesser hx t where lesser hi (Bin _ x l _) | x >= hi = lesser hi l lesser _ t` = t` trim (JustS lx) (JustS hx) t = middle lx hx t where middle lo hi (Bin _ x _ r) | x <= lo = middle lo hi r middle lo hi (Bin _ x l _) | x >= hi = middle lo hi l middle _ _ t` = t` /*-------------------------------------------------------------------- * [filterGt x t] filter all values >[x] from tree [t] * [filterLt x t] filter all values <[x] from tree [t] *--------------------------------------------------------------------*/ filterGt :: !(MaybeS a) !(Set a) -> Set a | < a & == a filterGt NothingS t = t filterGt (JustS b) t = filter` b t where filter` _ Tip = Tip filter` b` (Bin _ x l r) = case compare b` x of LT -> link x (filter` b` l) r EQ -> r GT -> filter` b` r filterLt :: !(MaybeS a) !(Set a) -> Set a | < a & == a filterLt NothingS t = t filterLt (JustS b) t = filter` b t where filter` _ Tip = Tip filter` b` (Bin _ x l r) = case compare x b` of LT -> link x l (filter` b` r) EQ -> l GT -> filter` b` l /*-------------------------------------------------------------------- * Split *--------------------------------------------------------------------*/ // | /O(log n)/. The expression (@'split' x set@) is a pair @(set1,set2)@ // where @set1@ comprises the elements of @set@ less than @x@ and @set2@ // comprises the elements of @set@ greater than @x@. split :: !a !(Set a) -> (!Set a, !Set a) | < a & == a split _ Tip = (Tip,Tip) split x (Bin _ y l r) = case compare x y of LT #! (lt, gt) = split x l = (lt, link y gt r) GT #! (lt,gt) = split x r = (link y l lt,gt) EQ = (l,r) // | /O(log n)/. Performs a 'split' but also returns whether the pivot // element was found in the original set. splitMember :: !a !(Set a) -> (!Set a, !Bool, !Set a) | < a & == a splitMember _ Tip = (Tip, False, Tip) splitMember x (Bin _ y l r) = case compare x y of LT #! (lt, found, gt) = splitMember x l = (lt, found, link y gt r) GT #! (lt, found, gt) = splitMember x r = (link y l lt, found, gt) EQ = (l, True, r) /*-------------------------------------------------------------------- Utility functions that maintain the balance properties of the tree. All constructors assume that all values in [l] < [x] and all values in [r] > [x], and that [l] and [r] are valid trees. In order of sophistication: [Bin sz x l r] The type constructor. [bin x l r] Maintains the correct size, assumes that both [l] and [r] are balanced with respect to each other. [balance x l r] Restores the balance and size. Assumes that the original tree was balanced and that [l] or [r] has changed by at most one element. [join x l r] Restores balance and size. Furthermore, we can construct a new tree from two trees. Both operations assume that all values in [l] < all values in [r] and that [l] and [r] are valid: [glue l r] Glues [l] and [r] together. Assumes that [l] and [r] are already balanced with respect to each other. [merge l r] Merges two trees and restores balance. Note: in contrast to Adam's paper, we use (<=) comparisons instead of (<) comparisons in [join], [merge] and [balance]. Quickcheck (on [difference]) showed that this was necessary in order to maintain the invariants. It is quite unsatisfactory that I haven't been able to find out why this is actually the case! Fortunately, it doesn't hurt to be a bit more conservative. --------------------------------------------------------------------*/ /*-------------------------------------------------------------------- * Join *--------------------------------------------------------------------*/ link :: !a !(Set a) !(Set a) -> Set a link x Tip r = insertMin x r link x l Tip = insertMax x l link x l=:(Bin sizeL y ly ry) r=:(Bin sizeR z lz rz) | delta*sizeL < sizeR = balanceL z (link x l lz) rz | delta*sizeR < sizeL = balanceR y ly (link x ry r) | otherwise = bin x l r // insertMin and insertMax don't perform potentially expensive comparisons. insertMax :: !a !(Set a) -> Set a insertMax x Tip = singleton x insertMax x (Bin _ y l r) = balanceR y l (insertMax x r) insertMin :: !a !(Set a) -> Set a insertMin x Tip = singleton x insertMin x (Bin _ y l r) = balanceL y (insertMin x l) r /*-------------------------------------------------------------------- * [merge l r]: merges two trees. *--------------------------------------------------------------------*/ merge :: !(Set a) !(Set a) -> Set a merge Tip r = r merge l Tip = l merge l=:(Bin sizeL x lx rx) r=:(Bin sizeR y ly ry) | delta*sizeL < sizeR = balanceL y (merge l ly) ry | delta*sizeR < sizeL = balanceR x lx (merge rx r) | otherwise = glue l r /*-------------------------------------------------------------------- * [glue l r]: glues two trees together. * Assumes that [l] and [r] are already balanced with respect to each other. *--------------------------------------------------------------------*/ glue :: !.(Set a) !.(Set a) -> Set a glue Tip r = r glue l Tip = l glue l r | size l > size r #! (m, l`) = deleteFindMax l = balanceR m l` r | otherwise #! (m, r`) = deleteFindMin r = balanceL m l r` // | /O(log n)/. Delete and find the minimal element. // // > deleteFindMin set = (findMin set, deleteMin set) deleteFindMin :: !.(Set a) -> (!a, !Set a) deleteFindMin (Bin _ x Tip r) = (x, r) deleteFindMin (Bin _ x l r) #! (xm, l`) = deleteFindMin l = (xm, balanceR x l` r) deleteFindMin Tip = (abort "Set.deleteFindMin: can not return the minimal element of an empty set", Tip) // | /O(log n)/. Delete and find the maximal element. // // > deleteFindMax set = (findMax set, deleteMax set) deleteFindMax :: !.(Set a) -> (!a, !Set a) deleteFindMax (Bin _ x l Tip ) = (x, l) deleteFindMax (Bin _ x l r) #! (xm, r`) = deleteFindMax r = (xm, balanceL x l r`) deleteFindMax Tip = (abort "Set.deleteFindMax: can not return the maximal element of an empty set", Tip) // | /O(log n)/. Retrieves the minimal key of the set, and the set // stripped of that element, or 'Nothing' if passed an empty set. minView :: !.(Set a) -> .(Maybe (!a, !Set a)) minView Tip = Nothing minView x = Just (deleteFindMin x) // | /O(log n)/. Retrieves the maximal key of the set, and the set // stripped of that element, or 'Nothing' if passed an empty set. maxView :: !.(Set a) -> .(Maybe (!a, !Set a)) maxView Tip = Nothing maxView x = Just (deleteFindMax x) /*-------------------------------------------------------------------- [balance x l r] balances two trees with value x. The sizes of the trees should balance after decreasing the size of one of them. (a rotation). [delta] is the maximal relative difference between the sizes of two trees, it corresponds with the [w] in Adams' paper, or equivalently, [1/delta] corresponds with the $\alpha$ in Nievergelt's paper. Adams shows that [delta] should be larger than 3.745 in order to garantee that the rotations can always restore balance. [ratio] is the ratio between an outer and inner sibling of the heavier subtree in an unbalanced setting. It determines whether a double or single rotation should be performed to restore balance. It is correspondes with the inverse of $\alpha$ in Adam's article. Note that: - [delta] should be larger than 4.646 with a [ratio] of 2. - [delta] should be larger than 3.745 with a [ratio] of 1.534. - A lower [delta] leads to a more 'perfectly' balanced tree. - A higher [delta] performs less rebalancing. - Balancing is automatic for random data and a balancing scheme is only necessary to avoid pathological worst cases. Almost any choice will do in practice - Allthough it seems that a rather large [delta] may perform better than smaller one, measurements have shown that the smallest [delta] of 4 is actually the fastest on a wide range of operations. It especially improves performance on worst-case scenarios like a sequence of ordered insertions. Note: in contrast to Adams' paper, we use a ratio of (at least) 2 to decide whether a single or double rotation is needed. Allthough he actually proves that this ratio is needed to maintain the invariants, his implementation uses a (invalid) ratio of 1. He is aware of the problem though since he has put a comment in his original source code that he doesn't care about generating a slightly inbalanced tree since it doesn't seem to matter in practice. However (since we use quickcheck :-) we will stick to strictly balanced trees. --------------------------------------------------------------------*/ delta :== 4 ratio :== 2 // Functions balanceL and balanceR are specialised versions of balance. // balanceL only checks whether the left subtree is too big, // balanceR only checks whether the right subtree is too big. // balanceL is called when left subtree might have been inserted to or when // right subtree might have been deleted from. balanceL :: !a !(Set a) !(Set a) -> Set a balanceL x l r = case r of Tip -> case l of Tip -> Bin 1 x Tip Tip (Bin _ _ Tip Tip) -> Bin 2 x l Tip (Bin _ lx Tip (Bin _ lrx _ _)) -> Bin 3 lrx (Bin 1 lx Tip Tip) (Bin 1 x Tip Tip) (Bin _ lx ll=:(Bin _ _ _ _) Tip) -> Bin 3 lx ll (Bin 1 x Tip Tip) (Bin ls lx ll=:(Bin lls _ _ _) lr=:(Bin lrs lrx lrl lrr)) | lrs < ratio*lls -> Bin (1+ls) lx ll (Bin (1+lrs) x lr Tip) | otherwise -> Bin (1+ls) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+size lrr) x lrr Tip) (Bin rs _ _ _) -> case l of Tip -> Bin (1+rs) x Tip r (Bin ls lx ll lr) | ls > delta*rs -> case (ll, lr) of (Bin lls _ _ _, Bin lrs lrx lrl lrr) | lrs < ratio*lls -> Bin (1+ls+rs) lx ll (Bin (1+rs+lrs) x lr r) | otherwise -> Bin (1+ls+rs) lrx (Bin (1+lls+size lrl) lx ll lrl) (Bin (1+rs+size lrr) x lrr r) (_, _) -> abort "Failure in Data.Map.balanceL" | otherwise -> Bin (1+ls+rs) x l r // balanceR is called when right subtree might have been inserted to or when // left subtree might have been deleted from. balanceR :: !a !(Set a) !(Set a) -> Set a balanceR x l r = case l of Tip -> case r of Tip -> Bin 1 x Tip Tip (Bin _ _ Tip Tip) -> Bin 2 x Tip r (Bin _ rx Tip rr=:(Bin _ _ _ _)) -> Bin 3 rx (Bin 1 x Tip Tip) rr (Bin _ rx (Bin _ rlx _ _) Tip) -> Bin 3 rlx (Bin 1 x Tip Tip) (Bin 1 rx Tip Tip) (Bin rs rx rl=:(Bin rls rlx rll rlr) rr=:(Bin rrs _ _ _)) | rls < ratio*rrs -> Bin (1+rs) rx (Bin (1+rls) x Tip rl) rr | otherwise -> Bin (1+rs) rlx (Bin (1+size rll) x Tip rll) (Bin (1+rrs+size rlr) rx rlr rr) (Bin ls _ _ _) -> case r of Tip -> Bin (1+ls) x l Tip (Bin rs rx rl rr) | rs > delta*ls -> case (rl, rr) of (Bin rls rlx rll rlr, Bin rrs _ _ _) | rls < ratio*rrs -> Bin (1+ls+rs) rx (Bin (1+ls+rls) x l rl) rr | otherwise -> Bin (1+ls+rs) rlx (Bin (1+ls+size rll) x l rll) (Bin (1+rrs+size rlr) rx rlr rr) (_, _) -> abort "Failure in Data.Map.balanceR" | otherwise -> Bin (1+ls+rs) x l r // rotate rotateL :: !a !(Set a) !(Set a) -> Set a rotateL x l r=:(Bin _ _ ly ry) | size ly < ratio*size ry = singleL x l r | otherwise = doubleL x l r rotateL _ _ Tip = abort "rotateL Tip" rotateR :: !a !(Set a) !(Set a) -> Set a rotateR x l=:(Bin _ _ ly ry) r | size ry < ratio*size ly = singleR x l r | otherwise = doubleR x l r rotateR _ Tip _ = abort "rotateL Tip" // basic rotations singleL :: !a !(Set a) !(Set a) -> Set a singleL x1 t1 (Bin _ x2 t2 t3) = bin x2 (bin x1 t1 t2) t3 singleL _ _ Tip = abort "singleL" singleR :: !a !(Set a) !(Set a) -> Set a singleR x1 (Bin _ x2 t1 t2) t3 = bin x2 t1 (bin x1 t2 t3) singleR _ Tip _ = abort "singleR" doubleL :: !a !(Set a) !(Set a) -> Set a doubleL x1 t1 (Bin _ x2 (Bin _ x3 t2 t3) t4) = bin x3 (bin x1 t1 t2) (bin x2 t3 t4) doubleL _ _ _ = abort "doubleL" doubleR :: !a !(Set a) !(Set a) -> Set a doubleR x1 (Bin _ x2 t1 (Bin _ x3 t2 t3)) t4 = bin x3 (bin x2 t1 t2) (bin x1 t3 t4) doubleR _ _ _ = abort "doubleR" /*-------------------------------------------------------------------- * The bin constructor maintains the size of the tree *--------------------------------------------------------------------*/ //bin :: !a !(Set a) !(Set a) -> Set a bin x l r :== Bin (size l + size r + 1) x l r