Version 1

This text contains a worked-out version of discussions with John and Rinus about type checks for dynamics.

Type checks for dynamics
Two most important operations on dynamics are:

· a dynamic pattern match e.g. apply (f :: a -> b) (v :: a) = dynamic (f v) :: b

· constructing a dynamic e.g. dynamic (length [1,2]) :: Int

Dynamic pattern matches between dynamics

Dynamic patterns are matched from left to right. The scope of a type pattern variable is different from ordinary notions of scope: the scope is from its first occurrence to the start of right hand side of an alternative.

Take the following example:

apply (dynamic _ :: Tree Int -> Tree Int) (dynamic _ :: Tree Int)

with the above definition of apply.

In the current implementation), the offered type (Tree Int -> Tree Int) is unified with (f :: a -> b). Then the unification of (Tree Int) with (v :: a) takes place. In this case the unification succeeds with the substitution [a := Tree Int, b := Tree Int].

But the Tree (and Int) offered by the first dynamic may not be the Tree (and Int) of the second dynamic. In general there is of course no reason to assume that both dynamics use the same Tree. So actually the example reads:

apply (dynamic _ :: Tree1 Int1 -> Tree1 Int1) (dynamic _ :: Tree2 Int2)

But the user expects Tree1 Int1 ==def Tree2 Int2 to hold. Both are types are equivalent if their type structures are equivalent. Thus a structural check is needed to establish its equivalence. Notice that this check is between dynamics. The types of the application do not play any role in the dynamic apply example.

Assume the pattern succeeds i.e. the unification check and the type structure check succeed. Each type has one or more descriptors associated with it e.g. the built-in List-type has descriptors for the constructors Nil and Cons associated with it. Assume we have the following definitions:

the dynamic from the first pattern:

module m1_d1

:: Tree1 a = Node a (Tree1 a) (Tree1 a) | Empty

the dynamic from the second pattern:

module m1_d2

:: Tree2 a = Node a (Tree2 a) (Tree2 a) | Empty

Each type has the following descriptors and label names associated with it. A label names has the following format: e__ <module_name>__<prefix kind> <descriptor name>:

For module m1_d1:
Constructor:
Label:

Node
e__m1__d1__?Node

Empty
e__m1__d1__?Empty

For module m2_d2:

Node
e__m1__d2__?Node

Empty
e__m1__d2__?Empty

Notice that the prefix kind is denoted by a question mark to indicate that it does not matter. It is guaranteed that if the structure check (a syntaxical check) of two types succeeds then both types have the same prefix kind.

If the pattern succeeds, references within module m1_d1 and module m1_d2 should to point to the same Node and Empty descriptors but they do not i.e. references point to the own descriptors in each dynamic.

The consequence is that certain pattern matches may not conform to expected behaviour. Consider the following example with the assumptions made above, holding:

Dynamic #1:

dynamic (f,f_data) :: (Tree1 Int1 -> Tree1 Int1,Tree1 Int1)

Dynamic #2:

dynamic (g,g_data) :: (Tree2 Int2 -> Tree2 Int2,Tree2 Int2)

with

g (Node _ _)

= abort “not reached for g (Tree1 Int1)”

g Empty

= abort “not reached for g (Tree1 Int1)”

Suppose that in my application I use the function g coming from the second dynamic and f_data from the first dynamic. Both alternatives of the function fail to match the f_data object although both the unification and the type structure check have succeeded. The desired (and normal) behaviour is that one of the alternative succeeds.

Hence instead of having two copies of the each descriptor, only one should be allowed. So after a dynamic pattern succeeds, all references should be redirected to a single descriptor to avoid the situation above.

Another problem more or less hidden in the example is, that it is perfectly possible to have two or more equally named modules in different dynamics and/or applications although they differ in the offered functionality. If, by accident, both modules offer the same functionality, then it should be shared in order to avoid multiple copies of the same descriptor and the problems associated with that. At the moment the current compilation system has no support for this.

Dynamic pattern matches between an application and dynamics
The dynamic pattern match of the apply discussed above, contained only type pattern variables e.g. there was no application defined Tree-type. Suppose there is. Then after a successful pattern match, the references to the descriptors associated with the Tree-type, should be changed to the descriptors of the application.

It should be noticed that the type structure check part of the pattern match, involves a check of Tree between the two dynamics and between one of the dynamics and the application.

Type definition storage

In both case type definition need to be available at run-time. For a dynamic at least all the type definitions and further definition dependencies occuring in the type injected into the dynamic need to be stored because at run-time a full structural check is needed.

For an application only the type definitions (and dependencies) which occur in the dynamic pattern should be available at run-time.

Writing a dynamic

If references to descriptors change at run-time, care should be taken when writing dynamics because the conversion functions from and to graph store the actual descriptor which may be incorrect. Consider the example below:

:: Tree a = Node a (Tree a) (Tree a) | Empty

write (tree :: Tree a) files

#! (ok,files)

= writeDynamic “a filename” (dynamic tree) files

= files

Start files

#! (ok,dynamic_tree,files)

= readDynamic “a filename” files

= write dynamic_tree files

The example simply reads and writes the dynamic back to disk. No changes whatsoever are made to the value written back. After the necessary checks, the references to the descriptors of the dynamic’s ‘local’ tree, are being redirected to the ones of the application as discussed above.

If before writing back the dynamics using, not the descriptor pointers of the application should be stored, but the original pointers. This arrangement avoids the following two problems:

· the dynamic is also usable by other applications after it has been read by one particular application. This property is indispensable.

· unnecessary dependencies are not created e.g. in the first example while writing the first dynamic: it could store one pointer to its (own) Empty descriptor but also one pointer to the Node descriptor of the other dynamic. Loss of efficiency.

The type consistency check
For lazy functional languages it does not suffice to do a dynamic pattern check only for a dynamic to be usable. Consider the following example:

dynamic (length (Node 1 Empty Empty)) :: Int

with the type :: Tree a = Node a (Tree a) (Tree a)

During a dynamic pattern check, only the right hand side i.e. the type following the double colon of the dynamic is checked. In a lazy functional language the application (length (Node 1 Empty Empty)) is not evaluated, so a closure is created. It is this closure that is packed into a dynamic.

At dynamic pattern match-time i.e. the application using the dynamic, the closure is evaluated in a foreign even hostile environment. Hence it has some environment requirements which have to be stored along with the dynamic. For reasons of clarity, a dynamic without closures does not have environments demands other than that of the right hand side.

In the above case these requirements are:

length :: (Tree Int) -> Int

:: Tree a = Node a (Tree a) (Tree a)

Int (from StdEnv)

These requirements should be consistent with the types and definitions provided by the foreign environment. If they are not satisfied, then an error should be reported. It should be pointed out that it may be possible to construct the injected expression, provided that the requirement functions exist. These functions could however have different types e.g. length :: Tree Int -> Real which makes the constructed expression type incorrect, most certainly leading to a crash.

From now on the above check is called the type consistency check.

[Below are reminders for me; they may not be correct. It is certainly necessary to investigate the type consistency issue further in combination with the version management as proposal in Marco Pil’s Phd-thesis.]

· A naïve approach to implement the type consistency check would be to simply list all requirements for each function in the object file and make the linker (?) do the check. At first sight there are the following disadvantages:

· there’s no notion of semantic change i.e. the first object module found and satisfying the consistency check is assumed to be the correct one.

· the application and the dynamic should have all types and their definitions available to perform an expensive consistency check.
