An algorithm to determine the entry nodes of shared subgraphs

Conventions:
· the notion ‘shared’ is intended as ‘shared among dynamics’ unless explicitly stated otherwise.

Need:
A nested dynamic is built indepently from other nested dynamics. The order of evaluation of nested dynamics determines the order in which they are built by the conversion functions.

A nested dynamic like any other Clean expression is a graph. This graph can be divided in a privately used part and in a subgraph shared among dynamics. The latter part can be part of an even larger shared subgraph. Because a nested dynamic can be decoded and built indepently of others, the shared subgraph is built indepently of its larger shared subgraph.

If the larger subgraph is built later, then the correct references i.e. the addresses of referenced nodes to and in the subgraph need to be known but these node addresses change across garbage collections. These nodes are called the entry nodes of the subgraph.

During decoding and building of a shared subgraph, the addresses of the entry nodes of that subgraph are stored in a table which is automatically updated by the garbage collector. If the even larger subgraph is built, then the correct addresses of the entry nodes are known.

High level algorithm:
The high level algorithm described here abstracts from efficiency and compatibility issues with the current code. The algorithm uses two passes to determine the entry nodes of shared subgraphs.

It is assumed that the graph to be encoded contains at least two nested dynamics which share some subgraph. The other case is the normal case which has already been covered by the original algorithm.

Pass 1: determining shared nodes among dynamics

The algorithm starts the encoding of the node passed as an argument i.e. the root. The graph associated with that node is visited in a top-down, left-to-right order which is reflected in its encoding.

The single exception to the above mentioned order is in case of dynamics: the encoding of possible dynamics encountered during the encoding of the current node is postponed until the encoding of that node has been finished. A property is that a dynamic does not contain an encoding of another dynamic.

During the graph traversal each dynamic encountered in the graph is identified by an unique colour. Each node reachable from the root has a an initially empty set of colours assigned to it.

Initially there are no dynamics and there is no current colour. If a dynamic is encountered then is assigned a colour. Each node reachable from a dynamic is then coloured with that colour by adding it to the colour set of the each node. If a node has already been coloured with that colour, then that node and the nodes reachable from it, need not to be coloured again.

Important properties:

· the number of visits for each node is bounded by a finite number of dynamics to be encoded as consequence the algorithm terminates.

· if there is a reference from a node n1 with colour set c1 to another node n2 with colour set c2, then it is guaranteed that |c2| >= |c1| holds.

The semantics of a coloured node is defined in terms of the colour set size of each a node:

· an empty set, means that a associated node is not referenced from a dynamic. This case occurs if the root node is not a dynamic.

· a singleton set, which means that the associated node is privately being used by a dynamic with the singleton colour.

· other sets, the associated node is a shared node and all the nodes it references are shared among dynamics.

In summary after the first pass the usage intensity of each node reachable from some root has been computed.

Pass 2: determining the entry nodes

The second pass collects all the entry points. A somewhat more formal definition of an entry node is:

· a node n2 is called an entry node if and only if there is a reference from a node n1 with colour set c1 to another node n2 with colour set c2.

· The colour set size of the node n2 is greater than that of node n1 i.e. |c2| > |c1|.

The entry points can simply be collected by another traversal of the graph and detecting increases in the colour set sizes from a node n1 to a node n2 if and only if a node n1 has not been visited yet. Node n1 is then marked as visited. As a consequence termination is guaranteed.

In contrast to the first pass, each node reachable from some root is visited exactly once.

In short, the second pass is a very straightforward application of graph traversal using marking for nodes to guarantee termination.

Optimized algorithm:

At the moment it cannot be determined if sharing among dynamics is typical because there is no data available about the usage of dynamics. For the time being, sharing among dynamics is assumed not to occur often. As a consequence only minimal overhead should be imposed on the original algorithm.

The proposed algorithm has the following two drawbacks:

· in worst case the number of dynamics determines how often a node is visited in order to determine the proper colouring of the node.

· the storage of colour sets associated with each node imposes a large memory overhead during the conversion. If a machine word consists of n bits, then (the number of dynamics + (n – 1)) / n machine words are needed for each colour set.

At the moment it seems that the first drawback cannot be removed without a substantially increased memory usage. However the memory usage colour set can be decreased using the following observations:

· an uncoloured or a single coloured node is expected to occur much more often than multiple coloured node as consequence of the earlier mentioned observation.

· equally colour sets occur often and could be shared among equally coloured nodes.

· during the collection of the entry nodes in the second pass, only the colour set sizes are relevant, not the actual colours in a colour set.

An uncoloured node i.e. the colour set associated with that node is empty cannot occur by the assumption made in ‘need’.

The termination of an algorithm in which each colour set has been replaced by a counter which counts the size of the colour set, cannot be guaranteed because without administration it cannot be known whether or not a node has been visited before.

Pass 1: determining shared nodes among dynamics

The representation of a coloured set is changed as follows:

· a single coloured node is represented by a pointer to its definition in the dynamic which first coloured it by making the very first reference to that node.

· each colour combination i.e. a colour set of at least size two is represented by an integer which identifies the colour combination.

Thus each single colour i.e. the colour assigned to each dynamic occupies a subrange within the above mentioned integer. The remaining numbers except for zero which is reserved, are occupied by colour combinations.

The optimized algorithm which is shown below uses the following tables:

· a shared nodes table. A colour set of a certain node with at least two colours, is represented by a pointer to its entry in the shared nodes table.

· a colour table. The colour table is used to allocate a new colour combination and it guarantees the termination of the algorithm.

· a two colour table. The two colour table is used to keep the new colour combination which is the result of adding the current colour to the singleton colour set associated with each dynamic.

Initially the following counters are zero initialized:

· next_available_colour_combination

· previous_colour_combinations

Both are pointers in the colour table. The former points to the next free colour combination in the table. The next colour combination will be identified with this number.

If there are colour combinations below the latter pointer i.e. if it is non-zero, then these combinations have been allocated by previously encoded dynamics and may be referenced from nodes indirectly via entries in the shared nodes table. It implies that these nodes have not been visited during the encoding of the current dynamic which is used to guarantee termination.

If an old colour combination i.e. a combination allocated during a previously encoded dynamic needs to be extended with the current colour, then a new colour combination is allocated from the colour table and this number is placed in the entry of the old colour combination. In this manner old combinations encountered during further graph traversal can be redirected to the new colour combination.

In case the encoding of a dynamic is finished, the following actions take place for another dynamic to be encoded:

· all nodes are marked as unvisited by assigning the next_available_colour_combination to the previous_colour_combinations.

· The entries in the colour tables are set to zero.

The algorithm presented below is a mix of assembler and a higher level imperative language. For reasons of clarity and understanding, a fragment of the original algorithm is shown which encodes the descriptor of a node:

if nodeP has already been visited then

// then it is an indirections which are handled below

else

// node nodeP visited for the first time:

// - save descriptor pointer in encoded graph

// - make descriptor entry of nodeP point to the encoded graph

//

// This is the normal code to make an indirection.

(pointer_to_next_free_word_in_encoded_graph) := (refP);

(refP) := (pointer_to_next_free_word_in_encoded_graph + 1);

pointer_to_next_free_word_in_encoded_graph += 4;

endif
If a same node is encountered later, then it has been marked i.e. as an indirection by the fragment above. If the indirection points to a node within the current dynamic, then it is an internal node reference.

Otherwise the node is shared among dynamics. The current colour is then added to that node and the nodes reachable from it by calling the visit_nodes-procedure:

// second reference to a shared part

refP := (nodeP) – 1;
if refP points within the current dynamic then

// internal reference; do nothing

else

// at least a single colour; new colour must be added the current node

// and all the nodes reachable from it.

visit_nodes (nodeP);

endif
In case of a single coloured node, an entry in the shared nodes table is made which consists of the descriptor pointer belonging to the shared node and a newly allocated colour combination. The children of the node are then added to the list of nodes to be visited.

In the other case i.e. a multi coloured node, the colour of the node is retrieved. If it is below the previous_colour_combinations, then a new colour combination is made and the colour table and the shared node entry are updated. As in the first case, the children are added to the list of nodes to be visited. If it is not below the previous_colour_combinations, then the node has already been visited. In this case, the children of that node are not added to the list of nodes to be visited.

If there are several equally coloured nodes having the same descriptor, then only one entry in the shared nodes table is needed. This could result in less memory usage.

visit_nodes []

= nop;

visit_nodes [nodeP:nodePs]

// precondition: nodeP and nodePs are all indirections because they have

//

 already been visited because this is the second reference

//

 to these shared nodes.

refP := (nodeP)-1;

if refP points into another dynamic then

// single coloured

real_descP := (refP);

two_coloured_set := make_two_coloured_set refP;

Shared_nodes[Shared_nodesP] := (real_descP, two_coloured_set);

(nodeP) := &(Shared_nodes[Shared_nodesP]) + 1;

list_of_pointers_to_children_nodes :=

make_list_of_children_nodes;

else

// refP points into the shared nodes table (at least two colours)

old_colour_set := 4(refP);

if old_colour < previous_colour_combinations then

4(refP) := get_or_make_new_colour_set old_colour_set;

list_of_pointers_to_children_nodes :=

make_list_of_children_nodes;

else

// node already visited which implies that its offspring has also

// been visited.

list_of_pointers_to_children_nodes := [];

endif

endif

visit_nodes (list_of_pointers_to_children_nodes ++ nodePs);

// postcondition: for all visited nodes their associated colour sets are greater

 or equal i.e. >= than the previous_colour_combinations

The two functions are used by visit_nodes to allocate new colour combinations if necessary:

get_or_make_new_colour_set old_colour_set:

// precondition: old_colour_set < previous_colour_combinations

new_colour_set := Colour_table[old_colour_set];

if new_colour_set <> 0 then

return new_colour;

else

// add new colour combination and add it to Colour table

new_colour_combination := next_available_colour_combination++;

Colour_table[old_colour_set] := new_colour_combination;

return new_colour_combination;

endif

// postcondition: new colour combination

make_two_coloured_set pointer_into_dynamic:

// precondition: first argument is a pointer into a dynamic but not the one

//

 being encoded

dynamic_of_old_colour :=

 determine_the_dynamic_in_which_old_colour_points

pointer_into_dynamic:;

new_colour_combination := next_available_colour_combination++;

Two_colour_table[dynamic_of_old_colour] := new_colour_combination;

return new_colour_combination;

// postcondition: new colour combination which consists of the previous

//

 colour and the current colour.

Pass 2: determining the entry nodes

The second pass still collects all entry nodes. The definition of an entry node is refined to take the new representation of colour sets into account. A node n2 is called an entry node if and only if there is a reference from node n1 and one of the following restrictions holds:

· if node n1 is encoded in a dynamic i.e. has no entry in the shared nodes table and node n2 is shared among dynamics. The entry node is then called an external entry node.

· if the colour table index of node1 does not equal the colour table index of node2. The entry node is then called an internal entry node.

The description of the second pass for the high-level algorithm applies also here.

Implementation issues:

· at the end of the first pass the total size of the encoded string is known. The size of the shared part can be summation of size of FALSE because internal indirections are not encoded

Refinements:
· if all nested dynamics using a particular entry point have been built, then the address of that entry node in the table should be removed

· determining descriptor/prefixes per (shared) component

Can the garbage collector always detect that not a yet build dynamic has become garbage?

Storing the structure of the graph module non-entry nodes to determine:

· when entries in the run-time array may be deleted.

· To determine what descriptor are needed by walking the node entry graph

Issues

· size of shared part and dynamic part

· selective linking

each node entry has its own set of descriptors

Bij elk bezoek aan een gesharde knoop wordt er gekeken of

Shared dynamics:

The optimized algorithm requires that if a node

The current algorithm encodes a node by first encoding its descriptor followed by

If a dynamic is shared among dynamics, the optimized algorithm is incorrect.

