Chapter 4

1 Note: the first three comments made on chapter 1

2 Incorrect: ‘by means of graphs of nodes’. The Clean graph is a set of interconnected nodes.

3 Note: what about code descriptors? The data and code-descriptor pointers are distinguished by the second bit. If it has been set, then it is a datadescriptor. Otherwise a code-descriptor. A code-descriptor is degenerated descriptor which contains the arity of the closure and a pointer to its descriptor.

4 Note: current implementation permits a set of coherent nodes to be accessed easily i.e. not individual nodes.

5 Incorrect: the code for each required functions is present. Given the same version of the Clean compiler on different platforms, descriptor pointers (even to closures) remain the same.

6 Incorrect: transformed instead of translated because it is semantics preserving.

7 Note: problems are encoding/decoding descriptor, label prefixes, nested dynamics, recovery after garbage collection and other technical details enforced by run-time system, compiler, code-generator and linkers.

8 Note: discussing an optimization of this nature is too premature because there much more problems to worry about.

9 Note: a very good point.

10 Note: it depends on what you represent in the type definition whether your representation is adequate to determine whether two types are equal. It is also an essential design issue for the implementation. The current implementation guarantees that if a dynamic pattern matches on a dynamic, then the value of that dynamic can be used. This seems straightforward but its implementation is quite involved. The main reason is that dynamics must remain understandable for its users.

11 Incorrect: again name equality is not enough. See also 10. It partly depends on the representation you choose for the type definitions and partly on what you want. Do you consider two structurally and name equivalent type definitions of certain type in different modules, equal or not?

12 Incorrect: synonym type must be expanded and therefore are not present at run-time because the type constructors contained in it are invalid outside the application.

13 Note: DefVars. What is your definition of type equality? The defintions of types t1 and t2 must be syntaxically the same modulo: alpha conversion on type variables and order of constructors of algebraic datatypes is insignificant. Note the order of record fields is significant and the strictness annotations also. These restrictions can probably be lifted and are implementation motivated.

14 Incorrect: in general equally named abstract datatypes cannot be exchanged among applications by exposing their implementation, just because they are equally named. The programmer expressed an intention with an abstract data type by exporting operations on this type from its defining module. This intention must be dealt with correctly.

15 Note: you discuss your notion of type equivalence. A more formal definition would be appreciated.

16 Note: the order is important because a different constructor order in the implementation module w.r.t. its definition order, gives an error message.

17 Note: type equality has been defined as follows: two equally named types t1 and t2 should have the same definition kind i.e. both must be algebraic, record or abstract and type definitions are equal modulo alpha conversion on the type variables occuring in it.

18 Incorrect: the descriptor names for

19 Note: the implementation e.g. machinecode or abc-code associated by a descriptor representing a Clean function replaces its graph representation by encoding its graph and the reduction strategy.

20 Note: pointer could be more specific i.e. the defining module name of the function and its descriptor name. This pointer representation is valid for both abc and object files which implies that platform independence i.e. network dynamics can be achieved by just replacing an object module by an abc-module and do just-in-time code generation. In the current implementation the pointer is extended with a library instance number which identifies the library which contains the definition to which the pointer refers.

21 Incorrect: ‘the correct obj.-file has to be found’ w.r.t. the current implementation. The library instance number mentioned in 20 is used to retrieve the definition of a pointer.

22 Note: please replace file by string in this context throughout your thesis because both theoretically and practically, the capability of conversion from and to string suffices. In this way, dynamics are not necessarily tied to files just because files can contain characters.

23 Note: just mention informally the semantics of these operations. In 4.2.1. you can refine it.

24 Incorrect: ‘undesirable that (very) large files’ is not the most significant reason to want lazy reading: depending on the type-component of a dynamic, dynamics might not even be constructible w.r.t. current application. You obviously cannot read complete dynamics at once.

25 Incorrect: ‘nice’ means a guaranteed crash. What is meant by reading in a dynamic? Just reading its representation or also building the actual graph encoded in this representation. In the latter case it means definitily a crash.

26 Note: same will happen for the library instances which are part of the pointer as discussed earlier. In the current implementation dynamics code pointers refer to these libraries. Each application is a library i.e. a set of object/abc-modules.

27 Incorrect: as discussed in 24: in general it cannot be loaded/linked at once if it contains nested dynamics because they might not be constructible. A more refined notion of eagerness is reading a nested dynamic at once assuming the type-check succeeded.

28 Note: ‘to a certain degree’. Just mention that lazy reading not done per node but per set of coherent nodes.

29 Note: your example reads lazily per node.

30 Incorrect: replace ‘relatively cheap’ by very expensive given the run-time graph representation because you have to rewalk the graph (hopefully not the entire graph each time) for each dynamic value and type. In worst case 2^n with n the number of dynamics. I suspect that the average is much better if dynamics are self-contained.

31 Note: only if you read set of nodes at once.

32 Note: The file-fetch table for a dynamic can be discarded if there are no fetch nodes which refer to shared nodes i.e. entries in the file-fetch table. There is a space leak here if all shared nodes have been built but there are still file-fetch nodes left which do not refer these shared nodes. For each set of nodes this can be determined at the moment of encoding a dynamic. In addition the dynamic run-time system must be informed that the administration associated with the dynamic can be discarded.

33 Incorrect: see 24 and 27.

34 Note: ‘crude’? Is there a sensible notion of unit of laziness? The current implementation reads a dynamic at a time assuming a succeeded type-check. It only links the bare minimum of code reachable. This is done by taking the transitive closures over the code entry points present in the graph. The run-time system is shared. A small function counting the leafs in a tree requires about 80 bytes of pure code and 40 for the tree implementation.

35 Note: replace ‘level of abstraction’ by program representation e.g. source, abstract syntax tree, abc-code, object-code.

36 Note: not all dynamics require code to be linked in. A datadynamic i.e. which does not contain closures or functions can be used without linking, if the type check succeeds.

37 Note: what is label identification? You probably mean resolving symbolic references.

38 Incorrect: ‘special’. Another static linker e.g. the microsoft linker can also be used because it most probably also throw away unreferenced code.

39 Incorrect: you probably want to say that all mostly symbolic references to code and/or data have been resolved once the image of the object-files in memory has been built.

40 Incorrect: The relocation table contains the site to apply a relocation, the referred symbol either by name or index and the kind of relocation to be applied.

41 Incorrect: The symbol table records whether a symbol is internal or external w.r.t. an object-file, the section in which it occurs e.g. set of instructions or data, the section kind (data or code), etc.

42 Note: the example is reference to external symbols which are of course defined in other object modules (compilation units).

43 Note: replace ‘functions’ by pieces of code or technically sections as mentioned in 41.

44 Note: a loader is in principle a degenerated linker. In our case the only addition is to determine the addresses of dynamically linked symbols (from the real dlls).

45 Note: sharing code is hardly possible using the current implementation due to the chosen implemention model.

46 Note: it is actually much more than a dynamic linker. It also does type definition checks which governs the dynamic linking of code.

47 Note: the current implementation preserve tables by putting all object modules in a single library file. At load-time it then creates an image of the library.

48 Note: ‘not yet present’. This is an optimization which may be difficult or even impossible to perform in the model behind the current implementation.

49 Incorrect: this is no longer an issue in the current implementation.

50 Vague: can you explain?

51 Incorrect: only the functions from the definition-module are being exported i.e. visible for other object-modules. Using the triple pointer i.e. name of the descriptor, defining module name and library instance number, code can always be identified. This is applicable to all referenced in the graph you are storing.

52 Incorrect and vague: refererences to nameless function are represented by the triple-pointer mentioned above.

53 Note: replace ‘linking data descriptors’ by ‘linking types’. Incorrect: what if application B contained a module A which defines the List-type? Does this situation create problems in your opinion?

54 Incorrect: a type check might not be performed, when a dynamic is written to the console. It might not even be writable to the console because it may not be constructible. This requires adaption of the current run-time system.

55 Note: ‘notable slow-done’ w.r.t. what? There have not been extensive efficiency tests on the current implementation.

56 Note: you can very short on dlls. You cannot use them because you cannot enforce that the chosen type implementation, is being used in its referencing contexts.

57 Note: the moment of linking is when a piece of graph is to be built which directly or indirectly needs code which has not already been linked in.

58 Note: the piece of text below on version management. Version management as you propose is not pratical nor necessary.

Version management

· My points on your proposal for version mangement are:

· impractical because if you replace a certain function f by another version, then a lot of dynamics change their behaviour. From the perspective of the programmer Dynamics are not referentially transparent anymore. You cannot reason anymore on your program without taking the history of bug fixes into account.

· Technically difficult. If you have some function f which uses some compiler generated functions, then the other version of f may use functionally equivalent but differently named compiler generated functions. Closure are much more problems because their names are almost randomly chosen.

The dynamic linker has to have a copy of each library as long as there dynamics refering to it. In this way dynamics can be overwritten. Much more version management is not necessary. If the programmer wants to replace some function f, she should do it using the Erlang-technique which preserves referential transparency for free.

