Chapter 1

1 Note: character argeemeent is almost the universal type to communicate among different systems e.g. TCP/IP. As an aside, abstract from files.

2 Incorrect: relatively type-safe. The transformations to/and from the universal type are not necessarily type preserving. It has not be enforced. Hence it is very weakly typed.

3 Note: the flaw of this implicit type check.

4 Incorrect: ‘Another bad part’ instead of ‘The bad part’.

5 Vague: what is your point?

6 Note: you discus the representation of functions in too much detail for an introduction.

7 Incorrect: ‘The near impossibility’ instead of ‘The impossibility’. Note: cyclic data structures and preserving sharing also matter.

8 Incorrect: ‘all major design issues’. The translation from Clean with dynamics to Clean without dynamics is well covered (uniqueness very minimally) but the (operational) model behind dynamics (chapter 4) is only poorly discussed. What are the design issues in chapter 4 relate to eachother?

9 Incorrect: figure 1.2. The (un)pickler have not vanished but it is made invisible by the run-time system from the programmers point of view.

10 Incorrect: ‘close’. What about device drivers in functional languages? A shell does not qualify as an operating system.

11 Incorrect: ‘Any value’. The World, Files, abstract and existential data types are at the very least problematic.

12 Note: generalise the principle at no cost by substituting ‘file’ by ‘string’.

13 Note: the idea of ‘type dependent functions’ are a contribution of your thesis worth mentioning in your list of contributions to ‘science’.

14 Incorrect: usage of ‘graph’. The conversion of a Clean graph implies conversion of code. The structure preserving graph conversion is applied to the data graph i.e. the graph modulo code pointers.

15 Incorrect: storage of source code. During the translation of source code to program information is deleted e.g. type-information and information is made explicitly or specialized. The inverse-translation is difficult if not impossible if desirable properties e.g. efficiency must be preserved. For example: where can the source code of a compiler generated function be found?

16 Note: an necessary requirement in choosing the representation of a function should be whether the translation to/from the run-time system is possible and efficient enough.

17 Incorrect: ‘hard to decide which pieces depend on which’. Not hard at all since these dependencies have already been computed earlier in the compilation process: a recursive traversal of the relocations required by a function exposes all needed pieces of the code.

18 Note: the actual implementation stores also a library instance pointer.

19 Note: a non-problem in the current implementation.

20 Incorrect: is referentially transparency being sacrificed here? A part from that, the programmer can hardly understand the consequences of replacing a function by a bug-fixed version.Version management should be reduced to a minimum. Use the idea Thomas Arts told me: function replacement is done explictly. 

21 Incorrect: ‘laborious time-consuming just-in-time’. You only need the code generator which is fast enough.

22 Incorrect: (again) referential transparency

23 Incorrect: version management is hardly a problem. From the programmers point of view: a dynamic should deliver its value. If modifications is needed, then dynamics can be used to manually do version management with the advantage that it is absolutely clear what is being upgraded. The major disadvantage is that the upgrade can only take place at specific sites. 

24 Incorrect: it merely emulates a shell.

25 Note: you have already adopted the approach sketched in previous points.

