implementation module transform import syntax, check, StdCompare, utilities, RWSDebug :: LiftState = { ls_var_heap :: !.VarHeap , ls_fun_defs :: !.{#FunDef} , ls_expr_heap :: !.ExpressionHeap } class lift a :: !a !*LiftState -> (!a, !*LiftState) instance lift [a] | lift a where lift l ls = mapSt lift l ls instance lift (a,b) | lift a & lift b where lift t ls = app2St (lift,lift) t ls instance lift (Optional a) | lift a where lift (Yes x) ls # (x, ls) = lift x ls = (Yes x, ls) lift no ls = (no, ls) instance lift Expression where lift (FreeVar {fv_name,fv_info_ptr}) ls=:{ls_var_heap} #! var_info = sreadPtr fv_info_ptr ls_var_heap = case var_info of VI_LiftedVariable var_info_ptr # (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap -> (Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap}) _ # (var_expr_ptr, ls_expr_heap) = newPtr EI_Empty ls.ls_expr_heap -> (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, { ls & ls_expr_heap = ls_expr_heap}) lift (App app) ls # (app, ls) = lift app ls = (App app, ls) lift (expr @ exprs) ls # ((expr,exprs), ls) = lift (expr,exprs) ls = (expr @ exprs, ls) lift (Let lad=:{let_binds, let_expr}) ls # ((let_binds,let_expr), ls) = lift (let_binds,let_expr) ls = (Let {lad & let_binds = let_binds, let_expr = let_expr}, ls) lift (Case case_expr) ls # (case_expr, ls) = lift case_expr ls = (Case case_expr, ls) lift (Selection is_unique expr selectors) ls # (selectors, ls) = lift selectors ls (expr, ls) = lift expr ls = (Selection is_unique expr selectors, ls) lift (Update expr1 selectors expr2) ls # (selectors, ls) = lift selectors ls (expr1, ls) = lift expr1 ls (expr2, ls) = lift expr2 ls = (Update expr1 selectors expr2, ls) lift (RecordUpdate cons_symbol expression expressions) ls # (expression, ls) = lift expression ls (expressions, ls) = lift expressions ls = (RecordUpdate cons_symbol expression expressions, ls) lift (TupleSelect symbol argn_nr expr) ls # (expr, ls) = lift expr ls = (TupleSelect symbol argn_nr expr, ls) lift (Lambda vars expr) ls # (expr, ls) = lift expr ls = (Lambda vars expr, ls) lift (MatchExpr opt_tuple cons_symb expr) ls # (expr, ls) = lift expr ls = (MatchExpr opt_tuple cons_symb expr, ls) lift expr ls = (expr, ls) instance lift Selection where lift (ArraySelection array_select expr_ptr index_expr) ls # (index_expr, ls) = lift index_expr ls = (ArraySelection array_select expr_ptr index_expr, ls) lift record_selection ls = (record_selection, ls) instance lift App where lift app=:{app_symb = app_symbol=:{symb_arity,symb_kind = SK_Function {glob_object,glob_module}}, app_args} ls # (app_args, ls) = lift app_args ls | glob_module == cIclModIndex #! fun_def = ls.ls_fun_defs.[glob_object] # {fun_info={fi_free_vars}} = fun_def fun_lifted = length fi_free_vars | fun_lifted > 0 # (app_args, ls_var_heap, ls_expr_heap) = add_free_variables fi_free_vars app_args ls.ls_var_heap ls.ls_expr_heap = ({ app & app_args = app_args, app_symb = { app_symbol & symb_arity = symb_arity + fun_lifted }}, { ls & ls_var_heap = ls_var_heap, ls_expr_heap = ls_expr_heap }) = ({ app & app_args = app_args }, ls) = ({ app & app_args = app_args }, ls) where add_free_variables :: ![FreeVar] ![Expression] !u:VarHeap !*ExpressionHeap -> (![Expression],!u:VarHeap,!*ExpressionHeap) add_free_variables [] app_args var_heap expr_heap = (app_args, var_heap, expr_heap) add_free_variables [{fv_name, fv_info_ptr} : free_vars] app_args var_heap expr_heap #! var_info = sreadPtr fv_info_ptr var_heap = case var_info of VI_LiftedVariable var_info_ptr # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } : app_args] var_heap expr_heap _ # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> add_free_variables free_vars [Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr } : app_args] var_heap expr_heap lift app=:{app_args} ls # (app_args, ls) = lift app_args ls = ({ app & app_args = app_args }, ls) instance lift (Bind a b) | lift a where lift bind=:{bind_src} ls # (bind_src, ls) = lift bind_src ls = ({ bind & bind_src = bind_src }, ls) instance lift Case where lift kees=:{ case_expr,case_guards,case_default } ls # ((case_expr,(case_guards,case_default)), ls) = lift (case_expr,(case_guards,case_default)) ls = ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, ls) instance lift CasePatterns where lift (AlgebraicPatterns type patterns) ls # (patterns, ls) = lift patterns ls = (AlgebraicPatterns type patterns, ls) lift (BasicPatterns type patterns) ls # (patterns, ls) = lift patterns ls = (BasicPatterns type patterns, ls) lift (DynamicPatterns patterns) ls # (patterns, ls) = lift patterns ls = (DynamicPatterns patterns, ls) instance lift AlgebraicPattern where lift pattern=:{ap_expr} ls # (ap_expr, ls) = lift ap_expr ls = ({ pattern & ap_expr = ap_expr }, ls) instance lift BasicPattern where lift pattern=:{bp_expr} ls # (bp_expr, ls) = lift bp_expr ls = ({ pattern & bp_expr = bp_expr }, ls) instance lift DynamicPattern where lift pattern=:{dp_rhs} ls # (dp_rhs, ls) = lift dp_rhs ls = ({ pattern & dp_rhs = dp_rhs }, ls) :: UnfoldState = { us_var_heap :: !.VarHeap , us_symbol_heap :: !.ExpressionHeap } class unfold a :: !a !*UnfoldState -> (!a, !*UnfoldState) instance unfold [a] | unfold a where unfold l us = mapSt unfold l us instance unfold (a,b) | unfold a & unfold b where unfold t us = app2St (unfold,unfold) t us instance unfold (Optional a) | unfold a where unfold (Yes x) us # (x, us) = unfold x us = (Yes x, us) unfold no us = (no, us) unfoldVariable :: !BoundVar !*UnfoldState -> (!Expression, !*UnfoldState) unfoldVariable var=:{var_name,var_info_ptr} us=:{us_var_heap} #! var_info = sreadPtr var_info_ptr us_var_heap = case var_info of VI_Expression expr -> (expr, us) VI_Variable var_name var_info_ptr # (var_expr_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap -> (Var {var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr}, { us & us_symbol_heap = us_symbol_heap}) _ -> (Var var, us) instance unfold Expression where unfold (Var var) us = unfoldVariable var us unfold (App app) us # (app, us) = unfold app us = (App app, us) unfold (expr @ exprs) us # ((expr,exprs), us) = unfold (expr,exprs) us = (expr @ exprs, us) unfold (Let lad) us # (lad, us) = unfold lad us = (Let lad, us) unfold (Case case_expr) us # (case_expr, us) = unfold case_expr us = (Case case_expr, us) unfold (Selection is_unique expr selectors) us # ((expr, selectors), us) = unfold (expr, selectors) us = (Selection is_unique expr selectors, us) unfold (Update expr1 selectors expr2) us # (((expr1, expr2), selectors), us) = unfold ((expr1, expr2), selectors) us = (Update expr1 selectors expr2, us) unfold (RecordUpdate cons_symbol expression expressions) us # ((expression, expressions), us) = unfold (expression, expressions) us = (RecordUpdate cons_symbol expression expressions, us) unfold (TupleSelect symbol argn_nr expr) us # (expr, us) = unfold expr us = (TupleSelect symbol argn_nr expr, us) unfold (Lambda vars expr) us # (expr, us) = unfold expr us = (Lambda vars expr, us) unfold (MatchExpr opt_tuple cons_symb expr) us # (expr, us) = unfold expr us = (MatchExpr opt_tuple cons_symb expr, us) unfold expr us = (expr, us) instance unfold Selection where unfold (ArraySelection array_select expr_ptr index_expr) us # (index_expr, us) = unfold index_expr us = (ArraySelection array_select expr_ptr index_expr, us) unfold (DictionarySelection var selectors expr_ptr index_expr) us # (index_expr, us) = unfold index_expr us (var_expr, us) = unfoldVariable var us = case var_expr of App {app_symb={symb_kind= SK_Constructor _ }, app_args} # [RecordSelection _ field_index:_] = selectors (App { app_symb = {symb_name, symb_kind = SK_Function array_select}}) = app_args !! field_index -> (ArraySelection { array_select & glob_object = { ds_ident = symb_name, ds_arity = 2, ds_index = array_select.glob_object}} expr_ptr index_expr, us) Var var -> (DictionarySelection var selectors expr_ptr index_expr, us) unfold record_selection ls = (record_selection, ls) instance unfold FreeVar where unfold fv=:{fv_info_ptr,fv_name} us=:{us_var_heap} # (new_info_ptr, us_var_heap) = newPtr VI_Empty us_var_heap = ({ fv & fv_info_ptr = new_info_ptr }, { us & us_var_heap = writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) us_var_heap }) instance unfold App where unfold app=:{app_symb, app_args} us # (app_args, us) = unfold app_args us | is_function_or_macro app_symb.symb_kind # (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us.us_symbol_heap = ({ app & app_args = app_args, app_info_ptr = new_info_ptr}, { us & us_symbol_heap = us_symbol_heap }) = ({ app & app_args = app_args, app_info_ptr = nilPtr }, us) where is_function_or_macro (SK_Function _) = True is_function_or_macro (SK_Macro _) = True is_function_or_macro (SK_OverloadedFunction _) = True is_function_or_macro symb_kind = False instance unfold (Bind a b) | unfold a where unfold bind=:{bind_src} us # (bind_src, us) = unfold bind_src us = ({ bind & bind_src = bind_src }, us) instance unfold Case where unfold kees=:{ case_expr,case_guards,case_default,case_info_ptr} us # ((case_expr,(case_guards,case_default)), us) = unfold (case_expr,(case_guards,case_default)) us (old_case_info, us_symbol_heap) = readPtr case_info_ptr us.us_symbol_heap (new_info_ptr, us_symbol_heap) = newPtr old_case_info us_symbol_heap = ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default, case_info_ptr = new_info_ptr}, { us & us_symbol_heap = us_symbol_heap }) instance unfold Let where unfold lad=:{let_binds, let_expr, let_info_ptr} us # (let_binds, us) = copy_bound_vars let_binds us # ((let_binds,let_expr), us) = unfold (let_binds,let_expr) us (old_let_info, us_symbol_heap) = readPtr let_info_ptr us.us_symbol_heap (new_info_ptr, us_symbol_heap) = newPtr old_let_info us_symbol_heap = ({lad & let_binds = let_binds, let_expr = let_expr, let_info_ptr = new_info_ptr}, { us & us_symbol_heap = us_symbol_heap }) where copy_bound_vars [bind=:{bind_dst} : binds] us # (bind_dst, us) = unfold bind_dst us (binds, us) = copy_bound_vars binds us = ([ {bind & bind_dst = bind_dst} : binds ], us) copy_bound_vars [] us = ([], us) instance unfold CasePatterns where unfold (AlgebraicPatterns type patterns) us # (patterns, us) = unfold patterns us = (AlgebraicPatterns type patterns, us) unfold (BasicPatterns type patterns) us # (patterns, us) = unfold patterns us = (BasicPatterns type patterns, us) unfold (DynamicPatterns patterns) us # (patterns, us) = unfold patterns us = (DynamicPatterns patterns, us) instance unfold BasicPattern where unfold guard=:{bp_expr} us # (bp_expr, us) = unfold bp_expr us = ({ guard & bp_expr = bp_expr }, us) instance unfold AlgebraicPattern where unfold guard=:{ap_vars,ap_expr} us # (ap_vars, us) = unfold ap_vars us (ap_expr, us) = unfold ap_expr us = ({ guard & ap_vars = ap_vars, ap_expr = ap_expr }, us) instance unfold DynamicPattern where unfold guard=:{dp_var,dp_rhs} us # (dp_var, us) = unfold dp_var us (dp_rhs, us) = unfold dp_rhs us = ({ guard & dp_var = dp_var, dp_rhs = dp_rhs }, us) updateFunctionCalls :: ![FunCall] ![FunCall] !*{# FunDef} !*SymbolTable -> (![FunCall], !*{# FunDef}, !*SymbolTable) updateFunctionCalls calls collected_calls fun_defs symbol_table = foldSt add_function_call calls (collected_calls, fun_defs, symbol_table) where add_function_call fc (collected_calls, fun_defs, symbol_table) # ({fun_symb}, fun_defs) = fun_defs![fc.fc_index] (collected_calls, symbol_table) = examineFunctionCall fun_symb fc (collected_calls, symbol_table) = (collected_calls, fun_defs, symbol_table) examineFunctionCall {id_info} fc=:{fc_index} (calls, symbol_table) #! entry = sreadPtr id_info symbol_table = case entry.ste_kind of STE_Called indexes | isMember fc_index indexes -> (calls, symbol_table) -> ([ fc : calls ], symbol_table <:= (id_info, { entry & ste_kind = STE_Called [ fc_index : indexes ]})) _ -> ( [ fc : calls ], symbol_table <:= (id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry })) //unfoldMacro :: !FunDef ![Expression] !*ExpandInfo -> (!Expression, !*ExpandInfo) unfoldMacro {fun_body = TransformedBody {tb_args,tb_rhs}, fun_info = {fi_calls}} args fun_defs (calls, es=:{es_var_heap,es_symbol_heap, es_symbol_table}) # (let_binds, var_heap) = bind_expressions tb_args args [] es_var_heap (result_expr, {us_symbol_heap,us_var_heap}) = unfold tb_rhs { us_symbol_heap = es_symbol_heap, us_var_heap = var_heap } (calls, fun_defs, es_symbol_table) = updateFunctionCalls fi_calls calls fun_defs es_symbol_table | isEmpty let_binds = (result_expr, fun_defs, (calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table })) # (new_info_ptr, us_symbol_heap) = newPtr EI_Empty us_symbol_heap = (Let { let_strict = cIsNotStrict, let_binds = let_binds, let_expr = result_expr, let_info_ptr = new_info_ptr}, fun_defs, (calls, { es & es_var_heap = us_var_heap, es_symbol_heap = us_symbol_heap, es_symbol_table = es_symbol_table })) where bind_expressions [var : vars] [expr : exprs] binds var_heap # (binds, var_heap) = bind_expressions vars exprs binds var_heap = bind_expression var expr binds var_heap bind_expressions _ _ binds var_heap = (binds, var_heap) bind_expression {fv_count} expr binds var_heap | fv_count == 0 = (binds, var_heap) bind_expression {fv_info_ptr} (Var {var_name,var_info_ptr}) binds var_heap = (binds, writePtr fv_info_ptr (VI_Variable var_name var_info_ptr) var_heap) bind_expression {fv_name,fv_info_ptr,fv_count} expr binds var_heap | fv_count == 1 = (binds, writePtr fv_info_ptr (VI_Expression expr) var_heap) # (new_info, var_heap) = newPtr VI_Empty var_heap new_var = { fv_name = fv_name, fv_def_level = NotALevel, fv_info_ptr = new_info, fv_count = 0 } = ([{ bind_src = expr, bind_dst = new_var} : binds], writePtr fv_info_ptr (VI_Variable fv_name new_info) var_heap) :: Group = { group_members :: ![Int] // , group_number :: !Int } :: PartitioningInfo = { pi_symbol_table :: !.SymbolTable // , pi_marks :: !.{# Int} , pi_var_heap :: !.VarHeap , pi_symbol_heap :: !.ExpressionHeap , pi_error :: !.ErrorAdmin , pi_next_num :: !Int , pi_next_group :: !Int , pi_groups :: ![[Int]] , pi_deps :: ![Int] } NotChecked :== -1 partitionateMacros :: !IndexRange !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin -> (!*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin ) partitionateMacros {ir_from,ir_to} mod_index fun_defs modules var_heap symbol_heap symbol_table error #! max_fun_nr = size fun_defs # partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap, pi_symbol_table = symbol_table, pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] } (fun_defs, modules, {pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error, pi_next_group, pi_groups, pi_marks}) = iFoldSt (pationate_macro mod_index max_fun_nr) ir_from ir_to (fun_defs, modules, partitioning_info) = (iFoldSt reset_body_of_rhs_macro ir_from ir_to fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error) where reset_body_of_rhs_macro macro_index macro_defs # (macro_def, macro_defs) = macro_defs![macro_index] = case macro_def.fun_body of RhsMacroBody body -> { macro_defs & [macro_index] = { macro_def & fun_body = CheckedBody body }} _ -> macro_defs pationate_macro mod_index max_fun_nr macro_index (macro_defs, modules, pi) # (macro_def, macro_defs) = macro_defs![macro_index] | macro_def.fun_kind == FK_Macro = case macro_def.fun_body of CheckedBody body # macros_modules_pi = foldSt (visit_macro mod_index max_fun_nr) macro_def.fun_info.fi_calls ( { macro_defs & [macro_index] = { macro_def & fun_body = PartioningMacro }}, modules, pi) -> expand_simple_macro mod_index macro_index macro_def macros_modules_pi PartioningMacro # identPos = newPosition macro_def.fun_symb macro_def.fun_pos -> (macro_defs, modules, { pi & pi_error = checkError macro_def.fun_symb "recursive macro definition" (setErrorAdmin identPos pi.pi_error) }) _ -> (macro_defs, modules, pi) = (macro_defs, modules, pi) visit_macro mod_index max_fun_nr {fc_index} macros_modules_pi = pationate_macro mod_index max_fun_nr fc_index macros_modules_pi expand_simple_macro mod_index macro_index macro=:{fun_body = CheckedBody body, fun_info, fun_symb, fun_pos} (macro_defs, modules, pi=:{pi_symbol_table,pi_symbol_heap,pi_var_heap,pi_error}) | macros_are_simple fun_info.fi_calls macro_defs # identPos = newPosition fun_symb fun_pos es = { es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap, es_symbol_heap = pi_symbol_heap, es_error = setErrorAdmin identPos pi_error } (tb_args, tb_rhs, local_vars, fi_calls, macro_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error}) = expandMacrosInBody [] body macro_defs mod_index modules es macro = { macro & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs}, fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = local_vars }} = ({ macro_defs & [macro_index] = macro }, modules, { pi & pi_symbol_table = es_symbol_table, pi_symbol_heap = es_symbol_heap, pi_var_heap = es_var_heap, pi_error = es_error }) = ({ macro_defs & [macro_index] = { macro & fun_body = RhsMacroBody body }}, modules, pi) macros_are_simple [] macro_defs = True macros_are_simple [ {fc_index} : calls ] macro_defs # {fun_kind,fun_body} = macro_defs.[fc_index] = is_a_pattern_macro fun_kind fun_body && macros_are_simple calls macro_defs where is_a_pattern_macro FK_Macro (TransformedBody {tb_args}) = True is_a_pattern_macro _ _ = False partitionateAndLiftFunctions :: ![IndexRange] !Index !*{# FunDef} !u:{# DclModule} !*VarHeap !*ExpressionHeap !*SymbolTable !*ErrorAdmin -> (!*{! Group}, !*{# FunDef}, !u:{# DclModule}, !*VarHeap, !*ExpressionHeap, !*SymbolTable, !*ErrorAdmin ) partitionateAndLiftFunctions ranges mod_index fun_defs modules var_heap symbol_heap symbol_table error #! max_fun_nr = size fun_defs # partitioning_info = { pi_var_heap = var_heap, pi_symbol_heap = symbol_heap, pi_symbol_table = symbol_table, pi_error = error, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] } (fun_defs, modules, {pi_groups, pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_error}) = foldSt (partitionate_functions mod_index max_fun_nr) ranges (fun_defs, modules, partitioning_info) groups = { {group_members = group} \\ group <- reverse pi_groups } = (groups, fun_defs, modules, pi_var_heap, pi_symbol_heap, pi_symbol_table, pi_error) where partitionate_functions mod_index max_fun_nr {ir_from,ir_to} funs_modules_pi = iFoldSt (partitionate_global_function mod_index max_fun_nr) ir_from ir_to funs_modules_pi partitionate_global_function mod_index max_fun_nr fun_index funs_modules_pi # (_, funs_modules_pi) = partitionate_function mod_index max_fun_nr fun_index funs_modules_pi = funs_modules_pi partitionate_function mod_index max_fun_nr fun_index (fun_defs, modules, pi) # (fun_def, fun_defs) = fun_defs![fun_index] = case fun_def.fun_body of CheckedBody body # fun_number = pi.pi_next_num # (min_dep, funs_modules_pi) = foldSt (visit_function mod_index max_fun_nr) fun_def.fun_info.fi_calls (max_fun_nr, ({ fun_defs & [fun_index] = { fun_def & fun_body = PartioningFunction body fun_number }}, modules, { pi & pi_next_num = inc fun_number, pi_deps = [fun_index : pi.pi_deps] })) -> try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep fun_def.fun_info.fi_def_level funs_modules_pi PartioningFunction _ fun_number -> (fun_number, (fun_defs, modules, pi)) TransformedBody _ | fun_def.fun_info.fi_group_index == NoIndex -> (max_fun_nr, ({ fun_defs & [fun_index] = {fun_def & fun_info.fi_group_index = pi.pi_next_group }}, modules, {pi & pi_next_group = inc pi.pi_next_group, pi_groups = [ [fun_index] : pi.pi_groups]})) -> (max_fun_nr, (fun_defs, modules, pi)) visit_function mod_index max_fun_nr {fc_index} (min_dep, funs_modules_pi) # (next_min, funs_modules_pi) = partitionate_function mod_index max_fun_nr fc_index funs_modules_pi = (min next_min min_dep, funs_modules_pi) try_to_close_group mod_index max_fun_nr fun_index fun_number min_dep def_level (fun_defs, modules, pi=:{pi_symbol_table, pi_var_heap, pi_symbol_heap, pi_deps, pi_groups, pi_next_group, pi_error}) | fun_number <= min_dep # (pi_deps, group_without_macros, group_without_funs, fun_defs) = close_group fun_index pi_deps [] [] max_fun_nr pi_next_group fun_defs (fun_defs, pi_var_heap, pi_symbol_heap) = liftFunctions def_level (group_without_macros ++ group_without_funs) pi_next_group fun_defs pi_var_heap pi_symbol_heap (fun_defs, modules, es) = expand_macros_in_group mod_index group_without_funs (fun_defs, modules, { es_symbol_table = pi_symbol_table, es_var_heap = pi_var_heap, es_symbol_heap = pi_symbol_heap, es_error = pi_error }) (fun_defs, modules, {es_symbol_table, es_var_heap, es_symbol_heap, es_error}) = expand_macros_in_group mod_index group_without_macros (fun_defs, modules, es) = (max_fun_nr, (fun_defs, modules, { pi & pi_deps = pi_deps, pi_var_heap = es_var_heap, pi_symbol_table = es_symbol_table, pi_error = es_error, pi_symbol_heap = es_symbol_heap, pi_next_group = inc pi_next_group, pi_groups = [ group_without_macros ++ group_without_funs : pi_groups ] })) = (min_dep, (fun_defs, modules, pi)) where close_group fun_index [d:ds] group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs # (fun_def, fun_defs) = fun_defs![d] fun_defs = { fun_defs & [d] = { fun_def & fun_info.fi_group_index = group_number }} | fun_def.fun_kind == FK_Macro # group_without_funs = [d : group_without_funs] | d == fun_index = (ds, group_without_macros, group_without_funs, fun_defs) = close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs # group_without_macros = [d : group_without_macros] | d == fun_index = (ds, group_without_macros, group_without_funs, fun_defs) = close_group fun_index ds group_without_macros group_without_funs nr_of_fun_defs group_number fun_defs expand_macros_in_group mod_index group funs_modules_es = foldSt (expand_macros mod_index) group (funs_modules_es) expand_macros mod_index fun_index (fun_and_macro_defs, modules, es) # (fun_def, fun_and_macro_defs) = fun_and_macro_defs![fun_index] {fun_symb,fun_body = PartioningFunction body _, fun_info, fun_pos} = fun_def identPos = newPosition fun_symb fun_pos (tb_args, tb_rhs, fi_local_vars, fi_calls, fun_and_macro_defs, modules, es) = expandMacrosInBody fun_info.fi_calls body fun_and_macro_defs mod_index modules { es & es_error = setErrorAdmin identPos es.es_error } fun_def = { fun_def & fun_body = TransformedBody { tb_args = tb_args, tb_rhs = tb_rhs}, fun_info = { fun_info & fi_calls = fi_calls, fi_local_vars = fi_local_vars }} = ({ fun_and_macro_defs & [fun_index] = fun_def }, modules, es) addFunctionCallsToSymbolTable calls fun_defs symbol_table = foldSt add_function_call_to_symbol_table calls ([], fun_defs, symbol_table) where add_function_call_to_symbol_table fc=:{fc_index} (collected_calls, fun_defs, symbol_table) # ({fun_symb = { id_info }, fun_kind}, fun_defs) = fun_defs![fc_index] | fun_kind == FK_Macro = (collected_calls, fun_defs, symbol_table) #! entry = sreadPtr id_info symbol_table = ([fc : collected_calls], fun_defs, symbol_table <:= (id_info, { ste_kind = STE_Called [fc_index], ste_index = NoIndex, ste_def_level = NotALevel, ste_previous = entry })) removeFunctionCallsFromSymbolTable calls fun_defs symbol_table = foldSt remove_function_call_from_symbol_table calls (fun_defs, symbol_table) where remove_function_call_from_symbol_table {fc_index} (fun_defs, symbol_table) # ({fun_symb = { id_info }}, fun_defs) = fun_defs![fc_index] #! entry = sreadPtr id_info symbol_table = (fun_defs, symbol_table <:= (id_info, entry.ste_previous)) expandMacrosInBody fi_calls {cb_args,cb_rhs} fun_defs mod_index modules es=:{es_symbol_table} # (prev_calls, fun_defs, es_symbol_table) = addFunctionCallsToSymbolTable fi_calls fun_defs es_symbol_table ([rhs:rhss], fun_defs, modules, (all_calls, es)) = expand cb_rhs fun_defs mod_index modules (prev_calls, { es & es_symbol_table = es_symbol_table }) (fun_defs, es_symbol_table) = removeFunctionCallsFromSymbolTable all_calls fun_defs es.es_symbol_table (merge_rhs, es_var_heap, es_symbol_heap, es_error) = mergeCases rhs rhss es.es_var_heap es.es_symbol_heap es.es_error (merge_rhs, cb_args, local_vars, {cos_error, cos_var_heap, cos_symbol_heap}) = determineVariablesAndRefCounts cb_args merge_rhs // (merge_rhs ---> (cb_args, merge_rhs)) { cos_error = es_error, cos_var_heap = es_var_heap, cos_symbol_heap = es_symbol_heap } = (cb_args, merge_rhs, local_vars, all_calls, fun_defs, modules, { es & es_error = cos_error, es_var_heap = cos_var_heap, es_symbol_heap = cos_symbol_heap, es_symbol_table = es_symbol_table }) // ---> (cb_args, local_vars, merge_rhs) cContainsFreeVars :== True cContainsNoFreeVars :== False cMacroIsCalled :== True cNoMacroIsCalled :== False mergeCases :: !Expression ![Expression] !*VarHeap !*ExpressionHeap !*ErrorAdmin -> *(!Expression, !*VarHeap, !*ExpressionHeap, !*ErrorAdmin); mergeCases expr [] var_heap symbol_heap error = (expr, var_heap, symbol_heap, error) mergeCases (Let lad=:{let_expr}) exprs var_heap symbol_heap error # (let_expr, var_heap, symbol_heap, error) = mergeCases let_expr exprs var_heap symbol_heap error = (Let {lad & let_expr = let_expr}, var_heap,symbol_heap, error) mergeCases case_expr=:(Case first_case=:{case_expr = Var {var_info_ptr}, case_default = No}) [expr : exprs] var_heap symbol_heap error = case (split_case var_info_ptr expr) of Yes {case_guards,case_default} # (case_guards, var_heap, symbol_heap, error) = merge_guards first_case.case_guards case_guards var_heap symbol_heap error -> mergeCases (Case { first_case & case_guards = case_guards, case_default = case_default }) exprs var_heap symbol_heap error No # (case_default, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error -> (Case { first_case & case_default = Yes case_default}, var_heap, symbol_heap, error) where split_case split_var_info_ptr (Case this_case=:{case_expr = Var {var_info_ptr}, case_guards, case_default}) | split_var_info_ptr == var_info_ptr = Yes this_case | has_no_default case_default = case case_guards of AlgebraicPatterns type [alg_pattern] -> case (split_case split_var_info_ptr alg_pattern.ap_expr) of Yes split_case -> Yes { split_case & case_guards = push_expression_into_guards ( \guard_expr -> Case { this_case & case_guards = AlgebraicPatterns type [ { alg_pattern & ap_expr = guard_expr }] }) split_case.case_guards } No -> No BasicPatterns type [basic_pattern] -> case (split_case split_var_info_ptr basic_pattern.bp_expr) of Yes split_case -> Yes { split_case & case_guards = push_expression_into_guards ( \guard_expr -> Case { this_case & case_guards = BasicPatterns type [ { basic_pattern & bp_expr = guard_expr }] }) split_case.case_guards } No -> No DynamicPatterns [dynamic_pattern] -> case (split_case split_var_info_ptr dynamic_pattern.dp_rhs) of Yes split_case -> Yes { split_case & case_guards = push_expression_into_guards ( \guard_expr -> Case { this_case & case_guards = DynamicPatterns [ { dynamic_pattern & dp_rhs = guard_expr }] }) split_case.case_guards } No -> No _ -> No | otherwise = No split_case split_var_info_ptr (Let lad=:{let_expr}) = case (split_case split_var_info_ptr let_expr) of Yes split_case -> Yes { split_case & case_guards = push_expression_into_guards ( \let_expr -> Let { lad & let_expr = let_expr}) split_case.case_guards } No -> No split_case split_var_info_ptr expr = No has_no_default No = True has_no_default (Yes _) = False push_expression_into_guards expr_fun (AlgebraicPatterns type patterns) = AlgebraicPatterns type (map (\algpattern -> { algpattern & ap_expr = expr_fun algpattern.ap_expr }) patterns) push_expression_into_guards expr_fun (BasicPatterns type patterns) = BasicPatterns type (map (\baspattern -> { baspattern & bp_expr = expr_fun baspattern.bp_expr }) patterns) push_expression_into_guards expr_fun (DynamicPatterns patterns) = DynamicPatterns (map (\dynpattern -> { dynpattern & dp_rhs = expr_fun dynpattern.dp_rhs }) patterns) /* Happened already */ /* skip_aliases info_ptr [] = info_ptr skip_aliases info_ptr [{bind_src=Var {var_info_ptr},bind_dst} : binds ] | info_ptr == var_info_ptr = skip_aliases bind_dst.fv_info_ptr binds = skip_aliases info_ptr binds */ merge_guards guards=:(AlgebraicPatterns type1 patterns1) (AlgebraicPatterns type2 patterns2) var_heap symbol_heap error | type1 == type2 # (merged_patterns, var_heap, symbol_heap, error) = merge_algebraic_patterns patterns1 patterns2 var_heap symbol_heap error = (AlgebraicPatterns type1 merged_patterns, var_heap, symbol_heap, error) = (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error) merge_guards guards=:(BasicPatterns basic_type1 patterns1) (BasicPatterns basic_type2 patterns2) var_heap symbol_heap error | basic_type1 == basic_type2 # (merged_patterns, var_heap, symbol_heap, error) = merge_basic_patterns patterns1 patterns2 var_heap symbol_heap error = (BasicPatterns basic_type1 merged_patterns, var_heap, symbol_heap, error) = (guards, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error) merge_guards guards=:(DynamicPatterns patterns1) (DynamicPatterns patterns2) var_heap symbol_heap error # (merged_patterns, var_heap, symbol_heap, error) = merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error = (DynamicPatterns merged_patterns, var_heap, symbol_heap, error) merge_guards patterns1 patterns2 var_heap symbol_heap error = (patterns1, var_heap, symbol_heap, checkError "" "incompatible patterns in case" error) merge_algebraic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error # (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error = merge_algebraic_patterns patterns alg_patterns var_heap symbol_heap error merge_algebraic_patterns patterns [] var_heap symbol_heap error = (patterns, var_heap, symbol_heap, error) merge_basic_patterns patterns [alg_pattern : alg_patterns] var_heap symbol_heap error # (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns alg_pattern patterns var_heap symbol_heap error = merge_basic_patterns patterns alg_patterns var_heap symbol_heap error merge_basic_patterns patterns [] var_heap symbol_heap error = (patterns, var_heap, symbol_heap, error) merge_dynamic_patterns patterns1 patterns2 var_heap symbol_heap error = (patterns1 ++ patterns2, var_heap, symbol_heap, error) merge_algebraic_pattern_with_patterns new_pattern [pattern=:{ap_symbol,ap_vars,ap_expr} : patterns] var_heap symbol_heap error | new_pattern.ap_symbol == ap_symbol # (new_expr, var_heap, symbol_heap) = replace_variables new_pattern.ap_vars new_pattern.ap_expr ap_vars var_heap symbol_heap (ap_expr, var_heap, symbol_heap, error) = mergeCases ap_expr [new_expr] var_heap symbol_heap error = ([{ pattern & ap_expr = ap_expr} : patterns], var_heap, symbol_heap, error) # (patterns, var_heap, symbol_heap, error) = merge_algebraic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error = ([ pattern : patterns ], var_heap, symbol_heap, error) where replace_variables [] expr ap_vars var_heap symbol_heap = (expr, var_heap, symbol_heap) replace_variables vars expr ap_vars var_heap symbol_heap # (expr, us) = unfold expr { us_var_heap = build_aliases vars ap_vars var_heap, us_symbol_heap = symbol_heap } = (expr, us.us_var_heap, us.us_symbol_heap) build_aliases [var1 : vars1] [ {fv_name,fv_info_ptr} : vars2 ] var_heap = build_aliases vars1 vars2 (writePtr var1.fv_info_ptr (VI_Variable fv_name fv_info_ptr) var_heap) build_aliases [] [] var_heap = var_heap merge_algebraic_pattern_with_patterns new_pattern [] var_heap symbol_heap error = ([new_pattern], var_heap, symbol_heap, error) merge_basic_pattern_with_patterns new_pattern [pattern=:{bp_value,bp_expr} : patterns] var_heap symbol_heap error | new_pattern.bp_value == bp_value # (bp_expr, var_heap, symbol_heap, error) = mergeCases bp_expr [new_pattern.bp_expr] var_heap symbol_heap error = ([{ pattern & bp_expr = bp_expr} : patterns], var_heap, symbol_heap, error) # (patterns, var_heap, symbol_heap, error) = merge_basic_pattern_with_patterns new_pattern patterns var_heap symbol_heap error = ([ pattern : patterns ], var_heap, symbol_heap, error) merge_basic_pattern_with_patterns new_pattern [] var_heap symbol_heap error = ([new_pattern], var_heap, symbol_heap, error) mergeCases case_expr=:(Case first_case=:{case_default}) [expr : exprs] var_heap symbol_heap error = case case_default of Yes default_expr # (default_expr, var_heap, symbol_heap, error) = mergeCases default_expr [expr : exprs] var_heap symbol_heap error -> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error) No # (default_expr, var_heap, symbol_heap, error) = mergeCases expr exprs var_heap symbol_heap error -> (Case { first_case & case_default = Yes default_expr }, var_heap, symbol_heap, error) mergeCases expr _ var_heap symbol_heap error = (expr, var_heap, symbol_heap, checkWarning "" " alternative will never match" error) liftFunctions min_level group group_index fun_defs var_heap expr_heap # (contains_free_vars, lifted_function_called, fun_defs) = foldSt (add_free_vars_of_non_recursive_calls_to_function group_index) group (False, False, fun_defs) | contains_free_vars # fun_defs = iterateSt (foldSt (add_free_vars_of_recursive_calls_to_function group_index) group) fun_defs = lift_functions group fun_defs var_heap expr_heap | lifted_function_called = lift_functions group fun_defs var_heap expr_heap = (fun_defs, var_heap, expr_heap) where add_free_vars_of_non_recursive_calls_to_function group_index fun (contains_free_vars, lifted_function_called, fun_defs) # (fun_def=:{fun_info}, fun_defs) = fun_defs![fun] { fi_free_vars,fi_def_level,fi_calls } = fun_info (lifted_function_called, fi_free_vars, fun_defs) = foldSt (add_free_vars_of_non_recursive_call fi_def_level group_index) fi_calls (lifted_function_called, fi_free_vars, fun_defs) = (contains_free_vars || not (isEmpty fi_free_vars), lifted_function_called, { fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}}) where add_free_vars_of_non_recursive_call fun_def_level group_index {fc_index} (lifted_function_called, free_vars, fun_defs) # ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index] | fi_group_index == group_index = (lifted_function_called, free_vars, fun_defs) | isEmpty fi_free_vars = (lifted_function_called, free_vars, fun_defs) # (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (False, free_vars) = (True, free_vars, fun_defs) add_free_vars_of_recursive_calls_to_function group_index fun (free_vars_added, fun_defs) # (fun_def=:{fun_info}, fun_defs) = fun_defs![fun] { fi_free_vars,fi_def_level,fi_calls } = fun_info (free_vars_added, fi_free_vars, fun_defs) = foldSt (add_free_vars_of_recursive_call fi_def_level group_index) fi_calls (free_vars_added, fi_free_vars, fun_defs) = (free_vars_added, { fun_defs & [fun] = { fun_def & fun_info = { fun_info & fi_free_vars = fi_free_vars }}}) where add_free_vars_of_recursive_call fun_def_level group_index {fc_index} (free_vars_added, free_vars, fun_defs) # ({fun_info = {fi_free_vars,fi_group_index}}, fun_defs) = fun_defs![fc_index] | fi_group_index == group_index # (free_vars_added, free_vars) = add_free_variables fun_def_level fi_free_vars (free_vars_added, free_vars) = (free_vars_added, free_vars, fun_defs) = (free_vars_added, free_vars, fun_defs) add_free_variables fun_level new_vars (free_vars_added, free_vars) = add_free_global_variables (skip_local_variables fun_level new_vars) (free_vars_added, free_vars) where skip_local_variables level vars=:[{fv_def_level}:rest_vars] | fv_def_level > level = skip_local_variables level rest_vars = vars skip_local_variables _ [] = [] add_free_global_variables [] (free_vars_added, free_vars) = (free_vars_added, free_vars) add_free_global_variables free_vars (free_vars_added, []) = (True, free_vars) add_free_global_variables [var:vars] (free_vars_added, free_vars) # (free_var_added, free_vars) = newFreeVariable var free_vars = add_free_global_variables vars (free_var_added || free_vars_added, free_vars) lift_functions group fun_defs var_heap expr_heap = foldSt lift_function group (fun_defs, var_heap, expr_heap) where lift_function fun (fun_defs=:{[fun] = fun_def}, var_heap, expr_heap) # {fi_free_vars} = fun_def.fun_info fun_lifted = length fi_free_vars (PartioningFunction {cb_args,cb_rhs} fun_number) = fun_def.fun_body (cb_args, var_heap) = add_lifted_args fi_free_vars cb_args var_heap (cb_rhs, {ls_fun_defs,ls_var_heap,ls_expr_heap}) = lift cb_rhs { ls_fun_defs = fun_defs, ls_var_heap = var_heap, ls_expr_heap = expr_heap } ls_var_heap = remove_lifted_args fi_free_vars ls_var_heap ls_fun_defs = { ls_fun_defs & [fun] = { fun_def & fun_lifted = fun_lifted, fun_body = PartioningFunction {cb_args = cb_args, cb_rhs = cb_rhs} fun_number}} = (ls_fun_defs, ls_var_heap, ls_expr_heap) // ---> ("lift_function", fun_def.fun_symb, fi_free_vars, cb_args, cb_rhs) remove_lifted_args vars var_heap = foldl (\var_heap {fv_name,fv_info_ptr} -> writePtr fv_info_ptr VI_Empty var_heap) var_heap vars add_lifted_args [lifted_arg=:{fv_name,fv_info_ptr} : lifted_args] args var_heap # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap args = [{ lifted_arg & fv_info_ptr = new_info_ptr } : args ] = add_lifted_args lifted_args args (writePtr fv_info_ptr (VI_LiftedVariable new_info_ptr) var_heap) add_lifted_args [] args var_heap = (args, var_heap) :: ExpandInfo :== (![FunCall], !.ExpandState) :: ExpandState = { es_symbol_table :: !.SymbolTable , es_var_heap :: !.VarHeap , es_symbol_heap :: !.ExpressionHeap , es_error :: !.ErrorAdmin } class expand a :: !a !*{#FunDef} !Int !v:{# DclModule} !*ExpandInfo -> (!a, !*{#FunDef}, !v:{# DclModule}, !*ExpandInfo) instance expand [a] | expand a where expand [x:xs] fun_and_macro_defs mod_index modules es # (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es (xs, fun_and_macro_defs, modules, es) = expand xs fun_and_macro_defs mod_index modules es = ([x:xs], fun_and_macro_defs, modules, es) expand [] fun_and_macro_defs mod_index modules es = ([], fun_and_macro_defs, modules, es) instance expand (a,b) | expand a & expand b where expand (x,y) fun_and_macro_defs mod_index modules es # (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es (y, fun_and_macro_defs, modules, es) = expand y fun_and_macro_defs mod_index modules es = ((x,y), fun_and_macro_defs, modules, es) instance expand (Optional a) | expand a where expand (Yes x) fun_and_macro_defs mod_index modules es # (x, fun_and_macro_defs, modules, es) = expand x fun_and_macro_defs mod_index modules es = (Yes x, fun_and_macro_defs, modules, es) expand no fun_and_macro_defs mod_index modules es = (no, fun_and_macro_defs, modules, es) /* determineArity (SK_Function) determineArity (SK_OverloadedFunction determineArity (SK_Constructor */ instance expand Expression where expand (App app=:{app_symb = symb=:{symb_arity, symb_kind = SK_Macro {glob_object,glob_module}}, app_args}) fun_and_macro_defs mod_index modules es # (app_args, fun_and_macro_defs, modules, (calls, state)) = expand app_args fun_and_macro_defs mod_index modules es #! macro = fun_and_macro_defs.[glob_object] | macro.fun_arity == symb_arity # (expr, fun_and_macro_defs, es) = unfoldMacro macro app_args fun_and_macro_defs (calls, state) = (expr, fun_and_macro_defs, modules, es) # (calls, es_symbol_table) = examineFunctionCall macro.fun_symb {fc_index = glob_object, fc_level = NotALevel} (calls, state.es_symbol_table) = (App { app & app_symb = { symb & symb_kind = SK_Function {glob_object = glob_object, glob_module = glob_module} }, app_args = app_args }, fun_and_macro_defs, modules, (calls, { state & es_symbol_table = es_symbol_table })) expand (App app=:{app_args}) fun_and_macro_defs mod_index modules es # (app_args, fun_and_macro_defs, modules, es) = expand app_args fun_and_macro_defs mod_index modules es = (App { app & app_args = app_args }, fun_and_macro_defs, modules, es) expand (expr @ exprs) fun_and_macro_defs mod_index modules es # ((expr,exprs), fun_and_macro_defs, modules, es) = expand (expr,exprs) fun_and_macro_defs mod_index modules es = (expr @ exprs, fun_and_macro_defs, modules, es) expand (Let lad=:{let_binds, let_expr}) fun_and_macro_defs mod_index modules es # ((let_binds,let_expr), fun_and_macro_defs, modules, es) = expand (let_binds,let_expr) fun_and_macro_defs mod_index modules es = (Let {lad & let_expr = let_expr, let_binds = let_binds}, fun_and_macro_defs, modules, es) expand (Case case_expr) fun_and_macro_defs mod_index modules es # (case_expr, fun_and_macro_defs, modules, es) = expand case_expr fun_and_macro_defs mod_index modules es = (Case case_expr, fun_and_macro_defs, modules, es) expand (Selection is_unique expr selectors) fun_and_macro_defs mod_index modules es # ((expr, selectors), fun_and_macro_defs, modules, es) = expand (expr, selectors) fun_and_macro_defs mod_index modules es = (Selection is_unique expr selectors, fun_and_macro_defs, modules, es) expand (Update expr1 selectors expr2) fun_and_macro_defs mod_index modules es # (((expr1, expr2), selectors), fun_and_macro_defs, modules, es) = expand ((expr1, expr2), selectors) fun_and_macro_defs mod_index modules es = (Update expr1 selectors expr2, fun_and_macro_defs, modules, es) expand (RecordUpdate cons_symbol expression expressions) fun_and_macro_defs mod_index modules es # ((expression, expressions), fun_and_macro_defs, modules, es) = expand (expression, expressions) fun_and_macro_defs mod_index modules es = (RecordUpdate cons_symbol expression expressions, fun_and_macro_defs, modules, es) expand (TupleSelect symbol argn_nr expr) fun_and_macro_defs mod_index modules es # (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es = (TupleSelect symbol argn_nr expr, fun_and_macro_defs, modules, es) expand (Lambda vars expr) fun_and_macro_defs mod_index modules es # (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es = (Lambda vars expr, fun_and_macro_defs, modules, es) expand (MatchExpr opt_tuple cons_symb expr) fun_and_macro_defs mod_index modules es # (expr, fun_and_macro_defs, modules, es) = expand expr fun_and_macro_defs mod_index modules es = (MatchExpr opt_tuple cons_symb expr, fun_and_macro_defs, modules, es) expand expr fun_and_macro_defs mod_index modules es = (expr, fun_and_macro_defs, modules, es) instance expand Selection where expand (ArraySelection array_select expr_ptr index_expr) fun_and_macro_defs mod_index modules es # (index_expr, fun_and_macro_defs, modules, es) = expand index_expr fun_and_macro_defs mod_index modules es = (ArraySelection array_select expr_ptr index_expr, fun_and_macro_defs, modules, es) expand record_selection fun_and_macro_defs mod_index modules es = (record_selection, fun_and_macro_defs, modules, es) instance expand (Bind a b) | expand a where expand bind=:{bind_src} fun_and_macro_defs mod_index modules es # (bind_src, fun_and_macro_defs, modules, es) = expand bind_src fun_and_macro_defs mod_index modules es = ({ bind & bind_src = bind_src }, fun_and_macro_defs, modules, es) instance expand Case where expand kees=:{ case_expr,case_guards,case_default } fun_and_macro_defs mod_index modules es # ((case_expr,(case_guards,case_default)), fun_and_macro_defs, modules, es) = expand (case_expr,(case_guards,case_default)) fun_and_macro_defs mod_index modules es = ({ kees & case_expr = case_expr,case_guards = case_guards, case_default = case_default }, fun_and_macro_defs, modules, es) instance expand CasePatterns where expand (AlgebraicPatterns type patterns) fun_and_macro_defs mod_index modules es # (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es = (AlgebraicPatterns type patterns, fun_and_macro_defs, modules, es) expand (BasicPatterns type patterns) fun_and_macro_defs mod_index modules es # (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es = (BasicPatterns type patterns, fun_and_macro_defs, modules, es) expand (DynamicPatterns patterns) fun_and_macro_defs mod_index modules es # (patterns, fun_and_macro_defs, modules, es) = expand patterns fun_and_macro_defs mod_index modules es = (DynamicPatterns patterns, fun_and_macro_defs, modules, es) instance expand AlgebraicPattern where expand alg_pattern=:{ap_expr} fun_and_macro_defs mod_index modules es # (ap_expr, fun_and_macro_defs, modules, es) = expand ap_expr fun_and_macro_defs mod_index modules es = ({ alg_pattern & ap_expr = ap_expr }, fun_and_macro_defs, modules, es) instance expand BasicPattern where expand bas_pattern=:{bp_expr} fun_and_macro_defs mod_index modules es # (bp_expr, fun_and_macro_defs, modules, es) = expand bp_expr fun_and_macro_defs mod_index modules es = ({ bas_pattern & bp_expr = bp_expr }, fun_and_macro_defs, modules, es) instance expand DynamicPattern where expand dyn_pattern=:{dp_rhs} fun_and_macro_defs mod_index modules es # (dp_rhs, fun_and_macro_defs, modules, es) = expand dp_rhs fun_and_macro_defs mod_index modules es = ({ dyn_pattern & dp_rhs = dp_rhs }, fun_and_macro_defs, modules, es) :: CollectState = { cos_var_heap :: !.VarHeap , cos_symbol_heap :: !.ExpressionHeap , cos_error :: !.ErrorAdmin } determineVariablesAndRefCounts :: ![FreeVar] !Expression !*CollectState -> (!Expression , ![FreeVar], ![FreeVar], !*CollectState) determineVariablesAndRefCounts free_vars expr cos=:{cos_var_heap} # (expr, local_vars, cos) = collectVariables expr [] { cos & cos_var_heap = clearCount free_vars cIsAGlobalVar cos_var_heap } (free_vars, cos_var_heap) = retrieveRefCounts free_vars cos.cos_var_heap (local_vars, cos_var_heap) = retrieveRefCounts local_vars cos_var_heap = (expr, free_vars, local_vars, { cos & cos_var_heap = cos_var_heap }) retrieveRefCounts free_vars var_heap = mapSt retrieveRefCount free_vars var_heap retrieveRefCount fv=:{fv_info_ptr} var_heap # (VI_Count count _, var_heap) = readPtr fv_info_ptr var_heap = ({ fv & fv_count = count }, var_heap) /* 'clearCount' initialises the 'fv_info_ptr' field of each 'FreeVar' */ class clearCount a :: !a !Bool !*VarHeap -> *VarHeap instance clearCount [a] | clearCount a where clearCount [x:xs] locality var_heap = clearCount x locality (clearCount xs locality var_heap) clearCount [] locality var_heap = var_heap instance clearCount (Bind a b) | clearCount b where clearCount bind=:{bind_dst} locality var_heap = clearCount bind_dst locality var_heap instance clearCount FreeVar where clearCount{fv_info_ptr} locality var_heap = var_heap <:= (fv_info_ptr, VI_Count 0 locality) /* In 'collectVariables' all local variables are collected. Moreover the reference counts of the local as well as of the global variables are determined. Aliases and unreachable bindings introduced in a 'let' are removed. */ class collectVariables a :: !a ![FreeVar] !*CollectState -> !(!a, ![FreeVar],!*CollectState) cContainsACycle :== True cContainsNoCycle :== False instance collectVariables Expression where collectVariables (Var var) free_vars cos # (var, free_vars, cos) = collectVariables var free_vars cos = (Var var, free_vars, cos) collectVariables (App app=:{app_args}) free_vars cos # (app_args, free_vars, cos) = collectVariables app_args free_vars cos = (App { app & app_args = app_args}, free_vars, cos) collectVariables (expr @ exprs) free_vars cos # ((expr, exprs), free_vars, cos) = collectVariables (expr, exprs) free_vars cos = (expr @ exprs, free_vars, cos) collectVariables (Let lad=:{let_binds, let_expr}) free_vars cos=:{cos_var_heap} # cos_var_heap = determine_aliases let_binds cos_var_heap (is_cyclic, let_binds, cos_var_heap) = detect_cycles_and_remove_alias_binds let_binds cos_var_heap | is_cyclic = (Let {lad & let_binds = let_binds }, free_vars, { cos & cos_var_heap = cos_var_heap, cos_error = checkError "" "cyclic let definition" cos.cos_error}) | otherwise # (let_expr, free_vars, cos) = collectVariables let_expr free_vars { cos & cos_var_heap = cos_var_heap } (let_binds, free_vars, cos) = collect_variables_in_binds let_binds [] free_vars cos | isEmpty let_binds = (let_expr, free_vars, cos) = (Let {lad & let_expr = let_expr, let_binds = let_binds}, free_vars, cos) where /* Set the 'var_info_field' of each bound variable to either 'VI_Alias var' (if this variable is an alias for 'var') or to 'VI_Count 0 cIsALocalVar' to initialise the reference count info. */ determine_aliases [{bind_dst={fv_info_ptr}, bind_src = Var var} : binds] var_heap = determine_aliases binds (writePtr fv_info_ptr (VI_Alias var) var_heap) determine_aliases [bind : binds] var_heap = determine_aliases binds (clearCount bind cIsALocalVar var_heap) determine_aliases [] var_heap = var_heap /* Remove all aliases from the list of 'let'-binds. Be carefull with cycles! */ detect_cycles_and_remove_alias_binds [] var_heap = (cContainsNoCycle, [], var_heap) detect_cycles_and_remove_alias_binds [bind=:{bind_dst={fv_info_ptr}} : binds] var_heap #! var_info = sreadPtr fv_info_ptr var_heap = case var_info of VI_Alias {var_info_ptr} | is_cyclic fv_info_ptr var_info_ptr var_heap -> (cContainsACycle, binds, var_heap) -> detect_cycles_and_remove_alias_binds binds var_heap _ # (is_cyclic, binds, var_heap) = detect_cycles_and_remove_alias_binds binds var_heap -> (is_cyclic, [bind : binds], var_heap) where is_cyclic orig_info_ptr info_ptr var_heap | orig_info_ptr == info_ptr = True #! var_info = sreadPtr info_ptr var_heap = case var_info of VI_Alias {var_info_ptr} -> is_cyclic orig_info_ptr var_info_ptr var_heap _ -> False /* Apply 'collectVariables' to the bound expressions (the 'bind_src' field of 'let'-bind) if the corresponding bound variable (the 'bind_dst' field) has been used. This can be determined by examining the reference count. */ collect_variables_in_binds binds collected_binds free_vars cos # (continue, binds, collected_binds, free_vars, cos) = examine_reachable_binds False binds collected_binds free_vars cos | continue = collect_variables_in_binds binds collected_binds free_vars cos = (collected_binds, free_vars, cos) examine_reachable_binds bind_found [bind=:{bind_dst={fv_info_ptr},bind_src} : binds] collected_binds free_vars cos # (bind_found, binds, collected_binds, free_vars, cos) = examine_reachable_binds bind_found binds collected_binds free_vars cos #! var_info = sreadPtr fv_info_ptr cos.cos_var_heap # (VI_Count count is_global) = var_info | count > 0 # (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos = (True, binds, [ { bind & bind_src = bind_src } : collected_binds ], free_vars, cos) = (bind_found, [bind : binds], collected_binds, free_vars, cos) examine_reachable_binds bind_found [] collected_binds free_vars cos = (bind_found, [], collected_binds, free_vars, cos) collectVariables (Case case_expr) free_vars cos # (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos = (Case case_expr, free_vars, cos) collectVariables (Selection is_unique expr selectors) free_vars cos # ((expr, selectors), free_vars, cos) = collectVariables (expr, selectors) free_vars cos = (Selection is_unique expr selectors, free_vars, cos) collectVariables (Update expr1 selectors expr2) free_vars cos # (((expr1, expr2), selectors), free_vars, cos) = collectVariables ((expr1, expr2), selectors) free_vars cos = (Update expr1 selectors expr2, free_vars, cos) collectVariables (RecordUpdate cons_symbol expression expressions) free_vars cos # ((expression, expressions), free_vars, cos) = collectVariables (expression, expressions) free_vars cos = (RecordUpdate cons_symbol expression expressions, free_vars, cos) collectVariables (TupleSelect symbol argn_nr expr) free_vars cos # (expr, free_vars, cos) = collectVariables expr free_vars cos = (TupleSelect symbol argn_nr expr, free_vars, cos) collectVariables (MatchExpr opt_tuple cons_symb expr) free_vars cos # (expr, free_vars, cos) = collectVariables expr free_vars cos = (MatchExpr opt_tuple cons_symb expr, free_vars, cos) collectVariables expr free_vars cos = (expr, free_vars, cos) instance collectVariables Selection where collectVariables (ArraySelection array_select expr_ptr index_expr) free_vars cos # (index_expr, free_vars, cos) = collectVariables index_expr free_vars cos = (ArraySelection array_select expr_ptr index_expr, free_vars, cos) collectVariables record_selection free_vars cos = (record_selection, free_vars, cos) instance collectVariables [a] | collectVariables a where collectVariables [x:xs] free_vars cos # (x, free_vars, cos) = collectVariables x free_vars cos # (xs, free_vars, cos) = collectVariables xs free_vars cos = ([x:xs], free_vars, cos) collectVariables [] free_vars cos = ([], free_vars, cos) instance collectVariables !(!a,!b) | collectVariables a & collectVariables b where collectVariables (x,y) free_vars cos # (x, free_vars, cos) = collectVariables x free_vars cos # (y, free_vars, cos) = collectVariables y free_vars cos = ((x,y), free_vars, cos) instance collectVariables (Optional a) | collectVariables a where collectVariables (Yes x) free_vars cos # (x, free_vars, cos) = collectVariables x free_vars cos = (Yes x, free_vars, cos) collectVariables no free_vars cos = (no, free_vars, cos) instance collectVariables (Bind a b) | collectVariables a where collectVariables bind=:{bind_src} free_vars cos # (bind_src, free_vars, cos) = collectVariables bind_src free_vars cos = ({bind & bind_src = bind_src}, free_vars, cos) instance collectVariables Case where collectVariables kees=:{ case_expr, case_guards, case_default } free_vars cos # (case_expr, free_vars, cos) = collectVariables case_expr free_vars cos # (case_guards, free_vars, cos) = collectVariables case_guards free_vars cos # (case_default, free_vars, cos) = collectVariables case_default free_vars cos = ({ kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default }, free_vars, cos) instance collectVariables CasePatterns where collectVariables (AlgebraicPatterns type patterns) free_vars cos # (patterns, free_vars, cos) = collectVariables patterns free_vars cos = (AlgebraicPatterns type patterns, free_vars, cos) collectVariables (BasicPatterns type patterns) free_vars cos # (patterns, free_vars, cos) = collectVariables patterns free_vars cos = (BasicPatterns type patterns, free_vars, cos) collectVariables (DynamicPatterns patterns) free_vars cos # (patterns, free_vars, cos) = collectVariables patterns free_vars cos = (DynamicPatterns patterns, free_vars, cos) instance collectVariables AlgebraicPattern where collectVariables pattern=:{ap_vars,ap_expr} free_vars cos # (ap_expr, free_vars, cos) = collectVariables ap_expr free_vars { cos & cos_var_heap = clearCount ap_vars cIsALocalVar cos.cos_var_heap} (ap_vars, cos_var_heap) = retrieveRefCounts ap_vars cos.cos_var_heap = ({ pattern & ap_expr = ap_expr, ap_vars = ap_vars }, free_vars, { cos & cos_var_heap = cos_var_heap }) instance collectVariables BasicPattern where collectVariables pattern=:{bp_expr} free_vars cos # (bp_expr, free_vars, cos) = collectVariables bp_expr free_vars cos = ({ pattern & bp_expr = bp_expr }, free_vars, cos) instance collectVariables DynamicPattern where collectVariables pattern=:{dp_var,dp_rhs} free_vars cos # (dp_rhs, free_vars, cos) = collectVariables dp_rhs free_vars { cos & cos_var_heap = clearCount dp_var cIsALocalVar cos.cos_var_heap} (dp_var, cos_var_heap) = retrieveRefCount dp_var cos.cos_var_heap = ({ pattern & dp_rhs = dp_rhs, dp_var = dp_var }, free_vars, { cos & cos_var_heap = cos_var_heap }) instance collectVariables BoundVar where collectVariables var=:{var_name,var_info_ptr} free_vars cos=:{cos_var_heap} #! var_info = sreadPtr var_info_ptr cos_var_heap = case var_info of VI_Alias alias -> collectVariables alias free_vars cos VI_Count count is_global | count > 0 || is_global -> (var, free_vars, { cos & cos_var_heap = writePtr var_info_ptr (VI_Count (inc count) is_global) cos.cos_var_heap }) -> (var, [{fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0} : free_vars ], { cos & cos_var_heap = writePtr var_info_ptr (VI_Count 1 is_global) cos.cos_var_heap }) _ -> abort "collectVariables [BoundVar] (transform, 1227)" <<- (var_info ---> var_name) instance <<< FreeVar where (<<<) file { fv_name } = file <<< fv_name instance <<< Ptr a where (<<<) file p = file <<< ptrToInt p instance <<< FunCall where (<<<) file {fc_index} = file <<< fc_index