implementation module trans import StdEnv import syntax, transform, checksupport, StdCompare, check, utilities import RWSDebug :: PartitioningInfo = { pi_marks :: !.{# Int} , pi_next_num :: !Int , pi_next_group :: !Int , pi_groups :: ![[Int]] , pi_deps :: ![Int] } NotChecked :== -1 partitionateFunctions :: !*{# FunDef} ![IndexRange] -> (!*{! Group}, !*{# FunDef}) partitionateFunctions fun_defs ranges #! max_fun_nr = size fun_defs # partitioning_info = { pi_marks = createArray max_fun_nr NotChecked, pi_deps = [], pi_next_num = 0, pi_next_group = 0, pi_groups = [] } (fun_defs, {pi_groups,pi_next_group}) = foldSt (partitionate_functions max_fun_nr) ranges (fun_defs, partitioning_info) groups = { {group_members = group} \\ group <- reverse pi_groups } = (groups, fun_defs) where partitionate_functions :: !Index !IndexRange !(!*{# FunDef}, !*PartitioningInfo) -> (!*{# FunDef}, !*PartitioningInfo) partitionate_functions max_fun_nr ir=:{ir_from,ir_to} (fun_defs, pi=:{pi_marks}) | ir_from == ir_to = (fun_defs, pi) | pi_marks.[ir_from] == NotChecked # (_, fun_defs, pi) = partitionate_function ir_from max_fun_nr fun_defs pi = partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi) = partitionate_functions max_fun_nr { ir & ir_from = inc ir_from } (fun_defs, pi) partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num} #! fd = fun_defs.[fun_index] # {fi_calls} = fd.fun_info (min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi) = try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi /* partitionate_function :: !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) partitionate_function fun_index max_fun_nr fun_defs pi=:{pi_next_num} #! fd = fun_defs.[fun_index] | fd.fun_kind # {fi_calls} = fd.fun_info (min_dep, fun_defs, pi) = visit_functions fi_calls max_fun_nr max_fun_nr fun_defs (push_on_dep_stack fun_index pi) = try_to_close_group fun_index pi_next_num min_dep max_fun_nr fun_defs pi = (max_fun_nr, fun_defs, pi) */ push_on_dep_stack :: !Int !*PartitioningInfo -> *PartitioningInfo; push_on_dep_stack fun_index pi=:{pi_deps,pi_marks,pi_next_num} = { pi & pi_deps = [fun_index : pi_deps], pi_marks = { pi_marks & [fun_index] = pi_next_num}, pi_next_num = inc pi_next_num} visit_functions :: ![FunCall] !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) visit_functions [{fc_index}:funs] min_dep max_fun_nr fun_defs pi=:{pi_marks} #! mark = pi_marks.[fc_index] | mark == NotChecked # (mark, fun_defs, pi) = partitionate_function fc_index max_fun_nr fun_defs pi = visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi = visit_functions funs (min min_dep mark) max_fun_nr fun_defs pi visit_functions [] min_dep max_fun_nr fun_defs pi = (min_dep, fun_defs, pi) try_to_close_group :: !Int !Int !Int !Int !*{# FunDef} !*PartitioningInfo -> *(!Int, !*{# FunDef}, !*PartitioningInfo) try_to_close_group fun_index fun_nr min_dep max_fun_nr fun_defs pi=:{pi_marks, pi_deps, pi_groups, pi_next_group} | fun_nr <= min_dep # (pi_deps, pi_marks, group, fun_defs) = close_group fun_index pi_deps pi_marks [] max_fun_nr pi_next_group fun_defs pi = { pi & pi_deps = pi_deps, pi_marks = pi_marks, pi_next_group = inc pi_next_group, pi_groups = [group : pi_groups] } = (max_fun_nr, fun_defs, pi) = (min_dep, fun_defs, pi) where close_group :: !Int ![Int] !*{# Int} ![Int] !Int !Int !*{# FunDef} -> (![Int], !*{# Int}, ![Int], !*{# FunDef}) close_group fun_index [d:ds] marks group max_fun_nr group_number fun_defs # marks = { marks & [d] = max_fun_nr } #! fd = fun_defs.[d] # fun_defs = { fun_defs & [d] = { fd & fun_info.fi_group_index = group_number }} | d == fun_index = (ds, marks, [d : group], fun_defs) = close_group fun_index ds marks [d : group] max_fun_nr group_number fun_defs :: BitVector :== Int :: *AnalyseInfo = { ai_heap :: !*VarHeap , ai_cons_class :: !*{! ConsClasses} , ai_class_subst :: !* ConsClassSubst , ai_next_var :: !Int } :: ConsClassSubst :== {# ConsClass} /* The argument classification (i.e. 'accumulating', 'active' or 'passive') of consumers is represented by an negative integer value. Possitive classifications are used to identify variables. Unification of classifications is done on-the-fly */ cPassive :== -1 cActive :== -2 cAccumulating :== -3 IsAVariable cons_class :== cons_class >= 0 combineClasses cc1 cc2 | IsAVariable cc1 = cAccumulating | IsAVariable cc2 = cAccumulating = min cc1 cc2 unifyClassifications :: !ConsClass !ConsClass !*ConsClassSubst -> *ConsClassSubst unifyClassifications cc1 cc2 subst # (cc1,subst) = skip_indirections_of_variables cc1 subst (cc2,subst) = skip_indirections_of_variables cc2 subst = combine_cons_classes cc1 cc2 subst where skip_indirections_of_variables :: Int !*ConsClassSubst -> (!Int,!*ConsClassSubst) skip_indirections_of_variables cc subst | IsAVariable cc #! cc = skip_indirections cc subst = (cc, subst) = (cc, subst) where skip_indirections cons_var subst #! redir = subst.[cons_var] | IsAVariable redir = skip_indirections redir subst = cons_var combine_cons_classes :: !Int !Int !*ConsClassSubst -> *ConsClassSubst combine_cons_classes cc1 cc2 subst | cc1 == cc2 = subst | IsAVariable cc1 #! cc_val1 = subst.[cc1] | IsAVariable cc2 #! cc_val2 = subst.[cc2] = { subst & [cc2] = cc1, [cc1] = combine_cons_constants cc_val1 cc_val2 } = { subst & [cc1] = combine_cons_constants cc_val1 cc2 } | IsAVariable cc2 #! cc_val2 = subst.[cc2] = { subst & [cc2] = combine_cons_constants cc1 cc_val2 } = subst combine_cons_constants cc1 cc2 = min cc1 cc2 write_ptr ptr val heap mess | isNilPtr ptr = abort mess = heap <:= (ptr,val) class consumerRequirements a :: !a !AnalyseInfo -> (!ConsClass, !AnalyseInfo) instance consumerRequirements BoundVar where consumerRequirements {var_info_ptr} ai=:{ai_heap} #! var_info = sreadPtr var_info_ptr ai_heap = case var_info of VI_AccVar temp_var -> (temp_var, ai) _ -> (cPassive, ai) instance consumerRequirements Expression where consumerRequirements (Var var) ai = consumerRequirements var ai consumerRequirements (App app) ai = consumerRequirements app ai consumerRequirements (fun_expr @ exprs) ai # (cc_fun, ai) = consumerRequirements fun_expr ai ai_class_subst = unifyClassifications cActive cc_fun ai.ai_class_subst = consumerRequirements exprs { ai & ai_class_subst = ai_class_subst } consumerRequirements (Let {let_binds,let_expr}) ai=:{ai_next_var,ai_heap} # (new_next_var, ai_heap) = init_variables let_binds ai_next_var ai_heap # ai = acc_requirements_of_let_binds let_binds ai_next_var { ai & ai_next_var = new_next_var, ai_heap = ai_heap } = consumerRequirements let_expr ai where init_variables [{bind_dst={fv_info_ptr}} : binds] ai_next_var ai_heap = init_variables binds (inc ai_next_var) (write_ptr fv_info_ptr (VI_AccVar ai_next_var) ai_heap "init_variables") init_variables [] ai_next_var ai_heap = (ai_next_var, ai_heap) acc_requirements_of_let_binds [ {bind_src, bind_dst={fv_info_ptr}} : binds ] ai_next_var ai # (bind_var, ai) = consumerRequirements bind_src ai ai_class_subst = unifyClassifications ai_next_var bind_var ai.ai_class_subst = acc_requirements_of_let_binds binds (inc ai_next_var) { ai & ai_class_subst = ai_class_subst } acc_requirements_of_let_binds [] ai_next_var ai = ai consumerRequirements (Case case_expr) ai = consumerRequirements case_expr ai consumerRequirements (BasicExpr _ _) ai = (cPassive, ai) consumerRequirements (MatchExpr _ _ expr) ai = consumerRequirements expr ai consumerRequirements (Selection _ expr selectors) ai # (cc, ai) = consumerRequirements expr ai ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst ai = requirementsOfSelectors selectors { ai & ai_class_subst = ai_class_subst } = (cPassive, ai) consumerRequirements (Update expr1 selectors expr2) ai # (cc, ai) = consumerRequirements expr1 ai ai = requirementsOfSelectors selectors ai (cc, ai) = consumerRequirements expr2 ai = (cPassive, ai) consumerRequirements (RecordUpdate cons_symbol expression expressions) ai # (cc, ai) = consumerRequirements expression ai (cc, ai) = consumerRequirements expressions ai = (cPassive, ai) consumerRequirements (TupleSelect tuple_symbol arg_nr expr) ai = consumerRequirements expr ai consumerRequirements (AnyCodeExpr _ _ _) ai = (cPassive, ai) consumerRequirements (ABCCodeExpr _ _) ai = (cPassive, ai) consumerRequirements (DynamicExpr dynamic_expr) ai = consumerRequirements dynamic_expr ai consumerRequirements (TypeCodeExpression _) ai = (cPassive, ai) consumerRequirements EE ai = (cPassive, ai) consumerRequirements expr ai = abort ("consumerRequirements " <<- expr) requirementsOfSelectors selectors ai = foldSt reqs_of_selector selectors ai where reqs_of_selector (ArraySelection _ _ index_expr) ai # (_, ai) = consumerRequirements index_expr ai = ai reqs_of_selector (DictionarySelection dict_var _ _ index_expr) ai # (_, ai) = consumerRequirements index_expr ai (cc_var, ai) = consumerRequirements dict_var ai = { ai & ai_class_subst = unifyClassifications cActive cc_var ai.ai_class_subst } reqs_of_selector _ ai = ai instance consumerRequirements App where consumerRequirements {app_symb={symb_kind = SK_Function {glob_module,glob_object}, symb_arity, symb_name}, app_args} ai=:{ai_cons_class} | glob_module == cIclModIndex | glob_object < size ai_cons_class #! fun_class = ai_cons_class.[glob_object] = reqs_of_args fun_class.cc_args app_args cPassive ai = consumerRequirements app_args ai = consumerRequirements app_args ai where reqs_of_args _ [] cumm_arg_class ai = (cumm_arg_class, ai) reqs_of_args [] _ cumm_arg_class ai = (cumm_arg_class, ai) reqs_of_args [form_cc : ccs] [arg : args] cumm_arg_class ai # (act_cc, ai) = consumerRequirements arg ai ai_class_subst = unifyClassifications form_cc act_cc ai.ai_class_subst = reqs_of_args ccs args (combineClasses act_cc cumm_arg_class) { ai & ai_class_subst = ai_class_subst } /* consumerRequirements {app_symb={symb_kind = SK_InternalFunction _}, app_args=[arg:_]} ai # (cc, ai) = consumerRequirements arg ai ai_class_subst = unifyClassifications cActive cc ai.ai_class_subst = (cPassive, { ai & ai_class_subst = ai_class_subst }) */ consumerRequirements {app_args} ai = consumerRequirements app_args ai instance consumerRequirements Case where consumerRequirements {case_expr,case_guards,case_default} ai # (cce, ai) = consumerRequirements case_expr ai // ai_class_subst = unifyClassifications cActive cce ai.ai_class_subst (ccgs, ai) = consumerRequirements (case_guards,case_default) ai //{ ai & ai_class_subst = ai_class_subst } = (ccgs, ai) instance consumerRequirements DynamicExpr where consumerRequirements {dyn_expr} ai = consumerRequirements dyn_expr ai /* instance consumerRequirements TypeCase where consumerRequirements {type_case_dynamic,type_case_patterns,type_case_default} ai # (_, ai) = consumerRequirements type_case_dynamic ai (ccgs, ai) = consumerRequirements (type_case_patterns,type_case_default) ai = (ccgs, ai) */ instance consumerRequirements DynamicPattern where consumerRequirements {dp_rhs} ai = consumerRequirements dp_rhs ai instance consumerRequirements CasePatterns where consumerRequirements (AlgebraicPatterns type patterns) ai = consumerRequirements patterns ai consumerRequirements (BasicPatterns type patterns) ai = consumerRequirements patterns ai consumerRequirements (DynamicPatterns dyn_patterns) ai = consumerRequirements dyn_patterns ai instance consumerRequirements AlgebraicPattern where consumerRequirements {ap_vars,ap_expr} ai=:{ai_heap} # ai_heap = bind_pattern_vars ap_vars ai_heap = consumerRequirements ap_expr { ai & ai_heap = ai_heap } where bind_pattern_vars [{fv_info_ptr,fv_count} : vars] var_heap | fv_count > 0 = bind_pattern_vars vars (write_ptr fv_info_ptr (VI_AccVar cPassive) var_heap "bind_pattern_vars") = bind_pattern_vars vars var_heap bind_pattern_vars [] var_heap = var_heap instance consumerRequirements BasicPattern where consumerRequirements {bp_expr} ai = consumerRequirements bp_expr ai instance consumerRequirements (Optional a) | consumerRequirements a where consumerRequirements (Yes x) ai = consumerRequirements x ai consumerRequirements No ai = (cPassive, ai) instance consumerRequirements (!a,!b) | consumerRequirements a & consumerRequirements b where consumerRequirements (x, y) ai # (ccx, ai) = consumerRequirements x ai (ccy, ai) = consumerRequirements y ai = (combineClasses ccx ccy, ai) instance consumerRequirements [a] | consumerRequirements a where consumerRequirements [x : xs] ai # (ccx, ai) = consumerRequirements x ai (ccxs, ai) = consumerRequirements xs ai = (combineClasses ccx ccxs, ai) consumerRequirements [] ai = (cPassive, ai) instance consumerRequirements (Bind a b) | consumerRequirements a where consumerRequirements {bind_src} ai = consumerRequirements bind_src ai analyseGroups :: !*{! Group} !*{#FunDef} !*VarHeap -> (!*{! ConsClasses}, !*{! Group}, !*{#FunDef}, !*VarHeap) analyseGroups groups fun_defs var_heap #! nr_of_funs = size fun_defs = analyse_groups 0 groups var_heap (createArray nr_of_funs { cc_size = 0, cc_args = [] }) fun_defs where analyse_groups group_nr groups var_heap class_env fun_defs | group_nr == size groups = (class_env, groups, fun_defs, var_heap) #! fun_indexes = groups.[group_nr] # (class_env, fun_defs, var_heap) = analyse_group fun_indexes.group_members var_heap class_env fun_defs = analyse_groups (inc group_nr) groups var_heap class_env fun_defs analyse_group group var_heap class_env fun_defs # (nr_of_vars, nr_of_local_vars, var_heap, class_env, fun_defs) = initial_cons_class group 0 0 var_heap class_env fun_defs initial_subst = createArray (nr_of_vars + nr_of_local_vars) cPassive (ai, fun_defs) = analyse_functions group { ai_heap = var_heap, ai_cons_class = class_env, ai_class_subst = initial_subst, ai_next_var = nr_of_vars } fun_defs class_env = collect_classifications group ai.ai_cons_class ai.ai_class_subst = (class_env, fun_defs, ai.ai_heap) initial_cons_class [fun : funs] next_var_number nr_of_local_vars var_heap class_env fun_defs #! fun_def = fun_defs.[fun] # (TransformedBody {tb_args}) = fun_def.fun_body (fresh_vars, next_var_number, var_heap) = fresh_variables tb_args next_var_number var_heap = initial_cons_class funs next_var_number (length fun_def.fun_info.fi_local_vars + nr_of_local_vars) var_heap { class_env & [fun] = { cc_size = 0, cc_args = fresh_vars }} fun_defs initial_cons_class [] next_var_number nr_of_local_vars var_heap class_env fun_defs = (next_var_number, nr_of_local_vars, var_heap, class_env, fun_defs) fresh_variables [{fv_name,fv_info_ptr} : vars] next_var_number var_heap # (fresh_vars, last_var_number, var_heap) = fresh_variables vars (inc next_var_number) var_heap var_heap = write_ptr fv_info_ptr (VI_AccVar next_var_number) var_heap "fresh_variables" = ([next_var_number : fresh_vars], last_var_number, var_heap) fresh_variables [] next_var_number var_heap = ([], next_var_number, var_heap) analyse_functions [fun : funs] ai fun_defs #! fun_def = fun_defs.[fun] # (TransformedBody {tb_rhs}) = fun_def.fun_body (_, ai) = consumerRequirements tb_rhs ai = analyse_functions funs ai fun_defs analyse_functions [] ai fun_defs = (ai, fun_defs) collect_classifications [] class_env class_subst = class_env collect_classifications [fun : funs] class_env class_subst #! fun_class = class_env.[fun] = collect_classifications funs { class_env & [fun] = determine_classification fun_class.cc_args class_subst } class_subst where determine_classification cc class_subst # (cc_size, cc_args) = mapAndLength (skip_indirections class_subst) cc = { cc_size = cc_size, cc_args = cc_args } skip_indirections class_subst cc | IsAVariable cc = skip_indirections class_subst class_subst.[cc] = cc mapAndLength f [x : xs] #! x = f x (length, xs) = mapAndLength f xs = (inc length, [x : xs]) mapAndLength f [] = (0, []) :: *TransformInfo = { ti_fun_defs :: !*{# FunDef} , ti_instances :: !*{! InstanceInfo } , ti_cons_args :: !{! ConsClasses} , ti_new_functions :: ![FunctionInfoPtr] , ti_fun_heap :: !*FunctionHeap , ti_var_heap :: !*VarHeap , ti_symbol_heap :: !*ExpressionHeap , ti_type_heaps :: !*TypeHeaps , ti_next_fun_nr :: !Index } class transform a :: !a !{# {# FunType} } !TransformInfo -> (!a, !TransformInfo) instance transform Expression where transform expr=:(App app=:{app_symb,app_args}) imported_funs ti # (app_args, ti) = transform app_args imported_funs ti = transformApplication { app & app_args = app_args } [] imported_funs ti transform appl_expr=:(expr @ exprs) imported_funs ti # (expr, ti) = transform expr imported_funs ti (exprs, ti) = transform exprs imported_funs ti = case expr of App app -> transformApplication app exprs imported_funs ti _ -> (expr @ exprs, ti) transform (Let lad=:{let_binds, let_expr}) imported_funs ti # (let_binds, ti) = transform let_binds imported_funs ti (let_expr, ti) = transform let_expr imported_funs ti = (Let { lad & let_binds = let_binds, let_expr = let_expr}, ti) transform (Case case_expr) imported_funs ti // = transformCase case_expr imported_funs ti # (case_expr, ti) = transform case_expr imported_funs ti = (Case case_expr, ti) transform (Selection opt_type expr selectors) imported_funs ti # (expr, ti) = transform expr imported_funs ti = transformSelection opt_type selectors expr ti transform (DynamicExpr dynamic_expr) imported_funs ti # (dynamic_expr, ti) = transform dynamic_expr imported_funs ti = (DynamicExpr dynamic_expr, ti) transform expr imported_funs ti = (expr, ti) neverMatchingCase = { case_expr = EE, case_guards = NoPattern, case_default = No, case_ident = No, case_info_ptr = nilPtr } instance transform Case where transform kees=:{case_expr, case_guards, case_default} imported_funs ti # (case_expr, ti) = transform case_expr imported_funs ti (case_guards, ti) = transform case_guards imported_funs ti (case_default, ti) = transform case_default imported_funs ti = ({kees & case_expr = case_expr, case_guards = case_guards, case_default = case_default}, ti) instance transform DynamicExpr where transform dyn=:{dyn_expr} imported_funs ti # (dyn_expr, ti) = transform dyn_expr imported_funs ti = ({dyn & dyn_expr = dyn_expr}, ti) instance transform DynamicPattern where transform dp=:{dp_rhs} imported_funs ti # (dp_rhs, ti) = transform dp_rhs imported_funs ti = ({ dp & dp_rhs = dp_rhs }, ti) /* transformCase :: !Case !*TransformInfo -> *(!Expression, !*TransformInfo) transformCase this_case=:{case_expr,case_guards,case_default,case_ident} imported_funs ti = case case_expr of Case case_in_case -> lift_case case_in_case case_guards case_default case_ident ti App {app_symb,app_args} -> case app_symb.symb_kind of SK_Constructor cons_index # (may_be_match_expr, ti) = match_and_instantiate cons_index app_args case_guards case_default ti -> case may_be_match_expr of Yes match_expr -> (match_expr, ti) No -> (Case neverMatchingCase, ti) _ # (may_be_unfolded_expr, ti) = tryToUnfoldExpression app_symb app_args ti -> case may_be_unfolded_expr of (Yes unfolded_expr) -> transformCase {this_case & case_expr = unfolded_expr } ti No # (this_case, ti) = transform this_case ti -> (Case this_case, ti) _ # (this_case, ti) = transform this_case ti -> (Case this_case, ti) where lift_case :: !Case ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(!Expression, !*TransformInfo) lift_case nested_case=:{case_guards,case_default} outer_guards outer_default outer_ident ti # (case_guards, ti) = lift_patterns case_guards outer_guards outer_default outer_ident ti (case_default, ti) = lift_default case_default outer_guards outer_default outer_ident ti = (Case {nested_case & case_guards = case_guards, case_default = case_default}, ti) lift_patterns :: ![PatternExpression] ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(![PatternExpression], !*TransformInfo) lift_patterns [guard=:{guard_expr}] outer_guards outer_default outer_ident ti # (guard_expr, ti) = transformCase {case_expr = guard_expr,case_guards = outer_guards,case_default = outer_default, case_ident = outer_ident} ti = ([{guard & guard_expr = guard_expr}], ti) lift_patterns [guard=:{guard_expr} : nested_guards] outer_guards outer_default outer_ident ti=:{ti_var_heap} # (outer_guards, ti_var_heap) = copy_guards outer_guards ti_var_heap # (guard_expr, ti) = transformCase {case_expr = guard_expr,case_guards = outer_guards,case_default = outer_default, case_ident = outer_ident} { ti & ti_var_heap = ti_var_heap } (nested_guards, ti) = lift_patterns nested_guards outer_guards outer_default outer_ident ti = ([{guard & guard_expr = guard_expr} : nested_guards], ti) lift_patterns [] outer_guards outer_default outer_ident ti = ([], ti) copy_guards [guard : guards] var_heap # (guard, _, var_heap) = unfold guard 0 var_heap (guards, var_heap) = copy_guards guards var_heap = ([ guard : guards ], var_heap) copy_guards [] var_heap = ([], var_heap) lift_default :: !(Optional Expression) ![PatternExpression] !(Optional Expression) !(Optional Ident) !*TransformInfo -> *(!Optional Expression, !*TransformInfo) lift_default (Yes default_expr) outer_guards outer_default outer_ident ti # (default_expr, ti) = transformCase {case_expr = default_expr, case_guards = outer_guards, case_default = outer_default, case_ident = outer_ident} ti = (Yes default_expr, ti) lift_default No outer_guards outer_default outer_ident ti = (No, ti) match_and_instantiate :: !(Global Index) ![Expression] ![PatternExpression] !(Optional Expression) !*TransformInfo -> *(!Optional Expression, !*TransformInfo) match_and_instantiate cons_index app_args [{guard_pattern = AlgebraicPattern {glob_module,glob_object={ds_index}} vars, guard_expr} : guards] case_default ti | cons_index.glob_module == glob_module && cons_index.glob_object == ds_index # (unfolded_guard_expr, _, ti_var_heap) = unfold guard_expr 0 (bindVariables vars app_args ti.ti_var_heap) (guard_expr, ti) = transform unfolded_guard_expr { ti & ti_var_heap = ti_var_heap } = (Yes guard_expr, ti) = match_and_instantiate cons_index app_args guards case_default ti match_and_instantiate cons_index app_args [guard : guards] case_default ti = match_and_instantiate cons_index app_args guards case_default ti match_and_instantiate cons_index app_args [] default_expr ti = transform default_expr ti tryToUnfoldExpression :: !SymbIdent ![Expression] !*TransformInfo -> *(!Optional Expression, ! *TransformInfo) tryToUnfoldExpression {symb_kind = SK_Function {glob_module,glob_object},symb_arity} app_args ti=:{ti_fun_defs, ti_var_heap, ti_symbol_heap} | glob_module == cIclModIndex #! fd = ti_fun_defs.[glob_object] | fd.fun_arity == symb_arity # (expr, ti_var_heap, ti_symbol_heap) = unfoldFunction fd.fun_body app_args ti_var_heap ti_symbol_heap = (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap}) = (No, ti) = (No, ti) tryToUnfoldExpression {symb_kind = SK_GeneratedFunction fun_ptr fun_index,symb_arity} app_args ti=:{ti_fun_heap, ti_var_heap, ti_symbol_heap} #! fun_info = sreadPtr fun_ptr ti_fun_heap # (FI_Function {gf_fun_def}) = fun_info | gf_fun_def.fun_arity == symb_arity # (expr, ti_var_heap, ti_symbol_heap) = unfoldFunction gf_fun_def.fun_body app_args ti_var_heap ti_symbol_heap = (Yes expr, { ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap }) = (No, ti) tryToUnfoldExpression expr app_args ti = (No, ti) unfoldFunction :: !FunctionBody ![Expression] !*VarHeap !*ExpressionHeap -> (!Expression, !*VarHeap, !*ExpressionHeap) unfoldFunction (TransformedBody {tb_args,tb_rhs}) act_args var_heap symbol_heap # var_heap = foldr2 (\{fv_info_ptr} arg -> writePtr fv_info_ptr (VI_Expression arg)) var_heap tb_args act_args # (unfolded_rhs, {us_var_heap,us_symbol_heap}) = unfold tb_rhs { us_var_heap = var_heap, us_symbol_heap = symbol_heap } = (unfolded_rhs, us_var_heap, us_symbol_heap) */ instance transform Bind a b | transform a where transform bind=:{bind_src} imported_funs ti # (bind_src, ti) = transform bind_src imported_funs ti = ({ bind & bind_src = bind_src }, ti) instance transform BasicPattern where transform pattern=:{bp_expr} imported_funs ti # (bp_expr, ti) = transform bp_expr imported_funs ti = ({ pattern & bp_expr = bp_expr }, ti) instance transform AlgebraicPattern where transform pattern=:{ap_expr} imported_funs ti # (ap_expr, ti) = transform ap_expr imported_funs ti = ({ pattern & ap_expr = ap_expr }, ti) instance transform CasePatterns where transform (AlgebraicPatterns type patterns) imported_funs ti # (patterns, ti) = transform patterns imported_funs ti = (AlgebraicPatterns type patterns, ti) transform (BasicPatterns type patterns) imported_funs ti # (patterns, ti) = transform patterns imported_funs ti = (BasicPatterns type patterns, ti) transform (DynamicPatterns patterns) imported_funs ti # (patterns, ti) = transform patterns imported_funs ti = (DynamicPatterns patterns, ti) instance transform Optional a | transform a where transform (Yes x) imported_funs ti # (x, ti) = transform x imported_funs ti = (Yes x, ti) transform no imported_funs ti = (no, ti) instance transform [a] | transform a where transform [x : xs] imported_funs ti # (x, ti) = transform x imported_funs ti (xs, ti) = transform xs imported_funs ti = ([x : xs], ti) transform [] imported_funs ti = ([], ti) compareProducers prods1 prods2 #! nr_of_prods = size prods1 = compare_producers 0 nr_of_prods prods1 prods2 where compare_producers prod_index nr_of_prods prods1 prods2 | prod_index == nr_of_prods = Equal # cmp = prods1.[prod_index] =< prods2.[prod_index] | cmp == Equal = compare_producers (inc prod_index) nr_of_prods prods1 prods2 = cmp instance =< Producer where (=<) pr1 pr2 | equal_constructor pr1 pr2 = compare_constructor_arguments pr1 pr2 | less_constructor pr1 pr2 = Smaller = Greater where compare_constructor_arguments (PR_Function _ index1) (PR_Function _ index2) = index1 =< index2 compare_constructor_arguments (PR_GeneratedFunction _ index1) (PR_GeneratedFunction _ index2) = index1 =< index2 compare_constructor_arguments (PR_Class app1 _ _) (PR_Class app2 _ _) = app1.app_args =< app2.app_args compare_constructor_arguments _ _ = Equal cIsANewFunction :== True cIsNotANewFunction :== False tryToFindInstance :: !{! Producer} !InstanceInfo !*(Heap FunctionInfo) -> (!Bool, !FunctionInfoPtr, !InstanceInfo, !.FunctionHeap) tryToFindInstance new_prods II_Empty fun_heap # (fun_def_ptr, fun_heap) = newPtr FI_Empty fun_heap = (cIsANewFunction, fun_def_ptr, II_Node new_prods fun_def_ptr II_Empty II_Empty, fun_heap) tryToFindInstance new_prods instances=:(II_Node prods fun_def_ptr left right) fun_heap # cmp = compareProducers new_prods prods | cmp == Equal = (cIsNotANewFunction, fun_def_ptr, instances, fun_heap) | cmp == Greater # (is_new, new_fun_def_ptr, right, fun_heap) = tryToFindInstance new_prods right fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) # (is_new, new_fun_def_ptr, left, fun_heap) = tryToFindInstance new_prods left fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) generateFunction :: !FunDef ![Int] !{! Producer} !FunctionInfoPtr !{# {# FunType} } !*TransformInfo -> (!Index, !Int, !*TransformInfo) generateFunction fd=:{fun_body = TransformedBody {tb_args,tb_rhs},fun_info = info =: {fi_group_index}} cc_args prods fun_def_ptr imported_funs ti=:{ti_var_heap,ti_next_fun_nr,ti_new_functions,ti_fun_heap,ti_symbol_heap,ti_fun_defs,ti_type_heaps,ti_cons_args} #! fi_group_index = max_group_index 0 prods fi_group_index ti_fun_defs ti_fun_heap ti_cons_args # (Yes fun_type=:{st_vars,st_attr_vars,st_args,st_result}) = fd.fun_type th_vars = foldSt (\tv type_var_heap -> type_var_heap <:= (tv.tv_info_ptr, TVI_Type (TV tv))) st_vars ti_type_heaps.th_vars th_attrs = foldSt (\av attr_var_heap -> attr_var_heap <:= (av.av_info_ptr, AVI_Attr (TA_Var av))) st_attr_vars ti_type_heaps.th_attrs (new_fun_args, new_arg_types, new_cons_args, th_vars, ti_var_heap) = determine_args cc_args 0 prods tb_args st_args th_vars ti_var_heap (fresh_arg_types, ti_type_heaps) = substitute new_arg_types { ti_type_heaps & th_vars = th_vars, th_attrs = th_attrs } (fresh_result_type, ti_type_heaps) = substitute st_result ti_type_heaps new_gen_fd = { gf_fun_def = { fd & fun_body = Expanding, fun_info = { info & fi_group_index = fi_group_index }}, gf_instance_info = II_Empty, gf_fun_index = ti_next_fun_nr, gf_cons_args = {cc_args = new_cons_args, cc_size = length new_cons_args} } ti_fun_heap = writePtr fun_def_ptr (FI_Function new_gen_fd) ti_fun_heap (tb_rhs, {us_var_heap,us_symbol_heap}) = unfold tb_rhs { us_var_heap = ti_var_heap, us_symbol_heap = ti_symbol_heap } (new_fun_rhs, ti) = transform tb_rhs imported_funs { ti & ti_var_heap = us_var_heap, ti_fun_heap = ti_fun_heap, ti_symbol_heap = us_symbol_heap, ti_next_fun_nr = inc ti_next_fun_nr, ti_new_functions = [fun_def_ptr : ti_new_functions], ti_type_heaps = ti_type_heaps } fun_arity = length new_fun_args new_fd = { fd & fun_body = TransformedBody {tb_args = new_fun_args, tb_rhs = new_fun_rhs}, fun_arity = fun_arity, fun_index = ti_next_fun_nr, fun_type = Yes { fun_type & st_args = fresh_arg_types, st_result = fresh_result_type }} = (ti_next_fun_nr, fun_arity, { ti & ti_fun_heap = ti.ti_fun_heap <:= (fun_def_ptr, FI_Function { new_gen_fd & gf_fun_def = new_fd })}) where determine_args [] prod_index producers forms types type_var_heap var_heap # (vars, var_heap) = new_variables forms var_heap = (vars, types, [], type_var_heap, var_heap) determine_args [cons_arg : cons_args ] prod_index producers [form : forms] [type : types] type_var_heap var_heap | cons_arg == cActive # new_args = determine_args cons_args (inc prod_index) prods forms types type_var_heap var_heap = determine_arg producers.[prod_index] form type new_args # (vars, types, new_cons_args, type_var_heap, var_heap) = determine_args cons_args prod_index prods forms types type_var_heap var_heap (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ([{ form & fv_info_ptr = new_info_ptr } : vars], [type : types], [cons_arg : new_cons_args], type_var_heap, var_heap <:= (form.fv_info_ptr, VI_Variable form.fv_name new_info_ptr)) where /* build_var_args new_name arity form_vars act_vars var_heap | arity == 0 = (form_vars, act_vars, var_heap) # (info_ptr, var_heap) = newPtr VI_Empty var_heap form_var = { fv_name = new_name, fv_info_ptr = info_ptr, fv_count = 0, fv_def_level = NotALevel } act_var = { var_name = new_name, var_info_ptr = info_ptr, var_expr_ptr = nilPtr } = build_var_args new_name (dec arity) [form_var : form_vars] [Var act_var : act_vars] var_heap */ determine_arg PR_Empty form=:{fv_name,fv_info_ptr} type (vars, types, new_cons_args, type_var_heap, var_heap) # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ([{ form & fv_info_ptr = new_info_ptr } : vars], [ type : types ], [cActive : new_cons_args], type_var_heap, var_heap <:= (fv_info_ptr, VI_Variable fv_name new_info_ptr)) /* determine_arg (PR_Function symbol _) vars {fv_info_ptr,fv_name} new_cons_args var_heap # (form_vars, act_vars, var_heap) = build_var_args fv_name symbol.symb_arity vars [] var_heap = (form_vars, writePtr fv_info_ptr ( VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr })) var_heap) determine_arg (PR_GeneratedFunction symbol _) vars {fv_info_ptr,fv_name} var_heap # (form_vars, act_vars, var_heap) = build_var_args fv_name symbol.symb_arity vars [] var_heap = (form_vars, writePtr fv_info_ptr ( VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr })) var_heap) */ determine_arg (PR_Class class_app free_vars class_types) {fv_info_ptr,fv_name} type (vars, types, new_cons_args, type_var_heap, var_heap) = (mapAppend (\{var_info_ptr,var_name} -> { fv_name = var_name, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0 }) free_vars vars, mapAppend (\_ -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = TE }) free_vars types, mapAppend (\_ -> cActive) free_vars new_cons_args, bind_class_types type.at_type class_types type_var_heap, var_heap <:= (fv_info_ptr, VI_Expression (App class_app))) bind_class_types (TA _ context_types) instance_types type_var_heap = bind_context_types context_types instance_types type_var_heap where bind_context_types [atype : atypes] [type : types] type_var_heap = bind_context_types atypes types (bind_type atype.at_type type type_var_heap) bind_context_types [] [] type_var_heap = type_var_heap bind_class_types _ _ type_var_heap = type_var_heap bind_type (TV {tv_info_ptr}) type type_var_heap = type_var_heap <:= (tv_info_ptr, TVI_Type type) bind_type (TA _ arg_types1) (TA _ arg_types2) type_var_heap = bind_types arg_types1 arg_types2 type_var_heap bind_type _ _ type_var_heap = type_var_heap bind_types [type1 : types1] [type2 : types2] type_var_heap = bind_types types1 types2 (bind_type type1.at_type type2.at_type type_var_heap) bind_types [] [] type_var_heap = type_var_heap new_variables [] var_heap = ([], var_heap) new_variables [form=:{fv_name,fv_info_ptr}:forms] var_heap # (vars, var_heap) = new_variables forms var_heap (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ([{ form & fv_info_ptr = new_info_ptr } : vars], writePtr fv_info_ptr (VI_Variable fv_name new_info_ptr) var_heap) max_group_index prod_index producers current_max fun_defs fun_heap cons_args | prod_index == size producers = current_max # current_max = max_group_index_of_producer producers.[prod_index] current_max fun_defs fun_heap cons_args = max_group_index (inc prod_index) producers current_max fun_defs fun_heap cons_args max_group_index_of_producer PR_Empty current_max fun_defs fun_heap cons_args = current_max max_group_index_of_producer (PR_Class {app_args} _ _) current_max fun_defs fun_heap cons_args = max_group_index_of_members app_args current_max fun_defs fun_heap cons_args max_group_index_of_producer prod current_max fun_defs fun_heap cons_args = abort ("trans.icl: max_group_index_of_producer" ---> prod) max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_name, symb_kind = SK_Function { glob_object = fun_index, glob_module = mod_index}}}) | mod_index == cIclModIndex | fun_index < size cons_args # {fun_info = {fi_group_index}} = fun_defs.[fun_index] = max fi_group_index current_max = current_max = current_max max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_GeneratedFunction fun_ptr fun_index }}) # (FI_Function {gf_fun_def={fun_info = {fi_group_index}}}) = sreadPtr fun_ptr fun_heap = max fi_group_index current_max max_group_index_of_member fun_defs fun_heap cons_args current_max (App {app_symb = {symb_kind = SK_Constructor _}, app_args}) = max_group_index_of_members app_args current_max fun_defs fun_heap cons_args max_group_index_of_members members current_max fun_defs fun_heap cons_args = foldl (max_group_index_of_member fun_defs fun_heap cons_args) current_max members transformFunctionApplication fun_def instances {cc_size, cc_args} app=:{app_symb,app_args} extra_args imported_funs ti # (app_symb, app_args, extra_args) = complete_application app_symb fun_def.fun_arity app_args extra_args | cc_size > 0 # (producers, new_args, ti) = determineProducers cc_args app_args 0 (createArray cc_size PR_Empty) ti | containsProducer cc_size producers # (is_new, fun_def_ptr, instances, ti_fun_heap) = tryToFindInstance producers instances ti.ti_fun_heap | is_new # (fun_index, fun_arity, ti) = generateFunction fun_def cc_args producers fun_def_ptr imported_funs (update_instance_info app_symb.symb_kind instances { ti & ti_fun_heap = ti_fun_heap }) app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr fun_index, symb_arity = length new_args} (app_symb, app_args, extra_args) = complete_application app_symb fun_arity new_args extra_args = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) # (FI_Function {gf_fun_index, gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr gf_fun_index, symb_arity = length new_args} (app_symb, app_args, extra_args) = complete_application app_symb gf_fun_def.fun_arity new_args extra_args = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, {ti & ti_fun_heap = ti_fun_heap }) = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) = (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) where update_instance_info (SK_Function {glob_object}) instances ti=:{ti_instances} = { ti & ti_instances = { ti_instances & [glob_object] = instances } } update_instance_info (SK_GeneratedFunction fun_def_ptr _) instances ti=:{ti_fun_heap} # (FI_Function fun_info, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap = { ti & ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function { fun_info & gf_instance_info = instances })} complete_application symb form_arity args [] = (symb, args, []) complete_application symb=:{symb_arity} form_arity args extra_args # arity_diff = min (form_arity - symb_arity) (length extra_args) = ({ symb & symb_arity = symb_arity + arity_diff }, args ++ take arity_diff extra_args, drop arity_diff extra_args) build_application app [] = App app build_application app extra_args = App app @ extra_args transformApplication :: !App ![Expression] !{# {# FunType} } !*TransformInfo -> *(!Expression,!*TransformInfo) transformApplication app=:{app_symb=symb=:{symb_kind = SK_Function {glob_module, glob_object},symb_arity}, app_args} extra_args imported_funs ti=:{ti_cons_args,ti_instances,ti_fun_defs} | glob_module == cIclModIndex | glob_object < size ti_cons_args #! cons_class = ti_cons_args.[glob_object] instances = ti_instances.[glob_object] fun_def = ti_fun_defs.[glob_object] = transformFunctionApplication fun_def instances cons_class app extra_args imported_funs ti // It seems as if we have an array function | isEmpty extra_args = (App app, ti) = (App { app & app_symb = { symb & symb_arity = symb_arity + length extra_args}, app_args = app_args ++ extra_args}, ti) // This function is imported | isEmpty extra_args = (App app, ti) # ar_diff = imported_funs.[glob_module].[glob_object].ft_arity - symb_arity nr_of_extra_args = length extra_args | nr_of_extra_args <= ar_diff = (App {app & app_args = app_args ++ extra_args, app_symb = { symb & symb_arity = symb_arity + nr_of_extra_args }}, ti) = (App {app & app_args = app_args ++ take ar_diff extra_args, app_symb = { symb & symb_arity = symb_arity + ar_diff }} @ drop ar_diff extra_args, ti) transformApplication app=:{app_symb={symb_kind = SK_GeneratedFunction fun_def_ptr fun_index}} extra_args imported_funs ti=:{ti_fun_heap} # (FI_Function {gf_fun_def,gf_instance_info,gf_cons_args}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap = transformFunctionApplication gf_fun_def gf_instance_info gf_cons_args app extra_args imported_funs { ti & ti_fun_heap = ti_fun_heap } transformApplication app [] imported_funs ti = (App app, ti) transformApplication app extra_args imported_funs ti = (App app @ extra_args, ti) transformSelection opt_type [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti = transform_selections selectors (app_args !! field_index) ti where transform_selections [] expr ti = (expr, ti) transform_selections [RecordSelection _ field_index : selectors] (App {app_symb={symb_kind= SK_Constructor _ }, app_args}) ti = transform_selections selectors (app_args !! field_index) ti transform_selections selectors expr ti = (Selection No expr selectors, ti) transformSelection opt_type selectors expr ti = (Selection opt_type expr selectors, ti) determineProducers :: ![Int] ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer},![Expression],!*TransformInfo) determineProducers cons_args [] prod_index producers ti = (producers, [], ti) determineProducers [ cons_arg : cons_args ] [ arg : args ] prod_index producers ti | cons_arg == cActive # (producers, new_args, ti) = determineProducers cons_args args (inc prod_index) producers ti = determine_producer arg new_args prod_index producers ti # (producers, new_args, ti) = determineProducers cons_args args prod_index producers ti = (producers, [arg : new_args], ti) where determine_producer arg=:(App app=:{app_info_ptr}) new_args prod_index producers ti | isNilPtr app_info_ptr = (producers, [arg : new_args], ti) # (app_info, ti_symbol_heap) = readPtr app_info_ptr ti.ti_symbol_heap = determineProducer app app_info new_args prod_index producers { ti & ti_symbol_heap = ti_symbol_heap } determine_producer arg new_args prod_index producers ti = (producers, [arg : new_args], ti) determineProducer :: !App !ExprInfo ![Expression] !Index !*{! Producer} !*TransformInfo -> (!*{! Producer}, ![Expression], !*TransformInfo) determineProducer app=:{app_symb = symb=:{symb_kind = SK_Constructor _}, app_args} (EI_ClassTypes types) new_args prod_index producers ti # (app_args, (new_vars, ti_var_heap)) = renewVariables app_args ([], ti.ti_var_heap) (new_args, ti_var_heap) = mapAppendSt retrieve_old_var new_vars new_args ti_var_heap = ({ producers & [prod_index] = PR_Class { app & app_args = app_args } new_vars types}, new_args, { ti & ti_var_heap = ti_var_heap }) where retrieve_old_var {var_info_ptr} var_heap #! var_info = sreadPtr var_info_ptr var_heap # (VI_Forward var) = var_info = (Var var, writePtr var_info_ptr VI_Empty (writePtr var.var_info_ptr VI_Empty var_heap)) /* determineProducer app=:{app_symb = symb=:{symb_kind = SK_Function { glob_module, glob_object }}, app_args} new_args prod_index producers ti | glob_module == cIclModIndex = ({ producers & [prod_index] = PR_Function symb glob_object}, app_args ++ new_args, ti) = (producers, [App app : new_args ], ti) determineProducer app=:{app_symb = symb=:{ symb_kind = SK_GeneratedFunction _ fun_index}, app_args} new_args prod_index producers ti=:{ti_fun_heap} = ({ producers & [prod_index] = PR_GeneratedFunction symb fun_index }, app_args ++ new_args, ti) determineProducer {app_symb = symb=:{symb_kind = SK_Constructor glob_index}, app_args} new_args prod_index producers ti = ({ producers & [prod_index] = PR_Constructor symb app_args}, new_args, ti) */ determineProducer app _ new_args _ producers ti = (producers, [App app : new_args ], ti) /* verify_class_members [ App {app_symb, app_args} : mems] = verify_class_members app_args && verify_class_members mems verify_class_members [ _ : mems] = False verify_class_members [] = True verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions} | fun_nr < size ti_fun_defs #! fd = ti_fun_defs.[fun_nr] = (True, ti) = (verify_new_function fun_nr act_arity ti_new_functions, ti) where verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions] | fun_nr == fun_index = True = verify_new_function fun_nr act_arity new_functions verify_new_function fun_nr _ [] = False /* verify_function fun_nr act_arity ti=:{ti_fun_defs,ti_new_functions} | fun_nr < size ti_fun_defs #! fd = ti_fun_defs.[fun_nr] = (fd.fun_arity > act_arity, ti) = (verify_new_function fun_nr act_arity ti_new_functions, ti) where verify_new_function fun_nr act_arity [{nf_fun_def={fun_index,fun_arity}}:new_functions] | fun_nr == fun_index = fun_arity > act_arity = verify_new_function fun_nr act_arity new_functions verify_new_function fun_nr _ [] = False ---> fun_nr */ */ containsProducer prod_index producers | prod_index == 0 = False #! prod_index = dec prod_index = is_a_producer producers.[prod_index] || containsProducer prod_index producers where is_a_producer PR_Empty = False is_a_producer _ = True class renewVariables a :: !a !(![BoundVar], !*VarHeap) -> (!a, !(![BoundVar], !*VarHeap)) instance renewVariables Expression where renewVariables (Var var=:{var_info_ptr}) (new_vars, var_heap) #! var_info = sreadPtr var_info_ptr var_heap = case var_info of VI_Forward new_var -> (Var { var & var_info_ptr = new_var.var_info_ptr }, (new_vars, var_heap)) _ # (new_info_ptr, var_heap) = newPtr (VI_Forward var) var_heap new_var = { var & var_info_ptr = new_info_ptr } var_heap = writePtr var_info_ptr (VI_Forward new_var) var_heap -> (Var new_var, ([new_var : new_vars], var_heap)) renewVariables (App app=:{app_args}) state # (app_args, state) = renewVariables app_args state = (App { app & app_args = app_args }, state) renewVariables expr state = (expr, state) instance renewVariables [a] | renewVariables a where renewVariables l state = mapSt renewVariables l state :: ImportedConstructors :== [Global Index] transformGroups :: !*{! Group} !*{#FunDef} !{!.ConsClasses} !{# CommonDefs} !{# {# FunType} } !*VarHeap !*TypeHeaps !*ExpressionHeap -> (!*{! Group}, !*{#FunDef}, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap) transformGroups groups fun_defs cons_args common_defs imported_funs var_heap type_heaps symbol_heap #! nr_of_funs = size fun_defs # imported_types = {com_type_defs \\ {com_type_defs} <-: common_defs } (groups, imported_types, collected_imports, {ti_fun_defs,ti_new_functions,ti_var_heap,ti_symbol_heap,ti_fun_heap,ti_next_fun_nr,ti_type_heaps}) = transform_groups 0 groups common_defs imported_funs imported_types [] {ti_fun_defs = fun_defs, ti_instances = createArray nr_of_funs II_Empty, ti_cons_args = cons_args, ti_new_functions = [], ti_fun_heap = newHeap, ti_var_heap = var_heap, ti_symbol_heap = symbol_heap, ti_type_heaps = type_heaps, ti_next_fun_nr = nr_of_funs} (groups, new_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) = foldSt (add_new_function_to_group common_defs ti_fun_heap) ti_new_functions (groups, [], imported_types, collected_imports, ti_type_heaps, ti_var_heap) = ( groups, { fundef \\ fundef <- [ fundef \\ fundef <-: ti_fun_defs ] ++ new_fun_defs }, imported_types, collected_imports, ti_var_heap, ti_type_heaps, ti_symbol_heap) where transform_groups group_nr groups common_defs imported_funs imported_types collected_imports ti | group_nr < size groups #! group = groups.[group_nr] # {group_members} = group # (ti_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) = foldSt (convert_function_type common_defs) group_members (ti.ti_fun_defs, imported_types, collected_imports, ti.ti_type_heaps, ti.ti_var_heap) = transform_groups (inc group_nr) groups common_defs imported_funs imported_types collected_imports (foldSt (transform_function imported_funs) group_members { ti & ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_var_heap = ti_var_heap }) = (groups, imported_types, collected_imports, ti) transform_function imported_funs fun ti=:{ti_fun_defs} #! fun_def = ti_fun_defs.[fun] # {fun_body = TransformedBody tb} = fun_def (fun_rhs, ti) = transform tb.tb_rhs imported_funs ti = { ti & ti_fun_defs = {ti.ti_fun_defs & [fun] = { fun_def & fun_body = TransformedBody { tb & tb_rhs = fun_rhs }}}} add_new_function_to_group :: !{# CommonDefs} !FunctionHeap !FunctionInfoPtr !(!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) -> (!*{! Group}, ![FunDef], !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) add_new_function_to_group common_defs ti_fun_heap fun_ptr (groups, fun_defs, imported_types, collected_imports, type_heaps, var_heap) # (FI_Function {gf_fun_def,gf_fun_index}) = sreadPtr fun_ptr ti_fun_heap group_index = gf_fun_def.fun_info.fi_group_index (Yes ft=:{st_args,st_result}) = gf_fun_def.fun_type ((st_result,st_args), {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs (st_result,st_args) { ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps = type_heaps, ets_var_heap = var_heap } #! group = groups.[group_index] = ({ groups & [group_index] = { group & group_members = [gf_fun_index : group.group_members]} }, [ { gf_fun_def & fun_type = Yes { ft & st_result = st_result, st_args = st_args }} : fun_defs], ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) convert_function_type common_defs fun_index (fun_defs, imported_types, collected_imports, type_heaps, var_heap) # (fun_def=:{fun_type = Yes fun_type}, fun_defs) = fun_defs![fun_index] (fun_type, imported_types, collected_imports, type_heaps, var_heap) = convertSymbolType common_defs fun_type imported_types collected_imports type_heaps var_heap = ({ fun_defs & [fun_index] = { fun_def & fun_type = Yes fun_type }}, imported_types, collected_imports, type_heaps, var_heap) convertSymbolType :: !{# CommonDefs} !SymbolType !*{#{# CheckedTypeDef}} !ImportedConstructors !*TypeHeaps !*VarHeap -> (!SymbolType, !*{#{# CheckedTypeDef}}, !ImportedConstructors, !*TypeHeaps, !*VarHeap) convertSymbolType common_defs st imported_types collected_imports type_heaps var_heap # (st, {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes common_defs st { ets_type_defs = imported_types, ets_collected_conses = collected_imports, ets_type_heaps= type_heaps, ets_var_heap = var_heap } = (st, ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) :: ExpandTypeState = { ets_type_defs :: !.{#{#CheckedTypeDef}} , ets_collected_conses :: !ImportedConstructors , ets_type_heaps :: !.TypeHeaps , ets_var_heap :: !.VarHeap } class expandSynTypes a :: !{# CommonDefs} !a !*ExpandTypeState -> (!a, !*ExpandTypeState) /* class expandSynTypes a :: !a (!*{#{#CheckedTypeDef}}, !*TypeHeaps) -> (!a, (!*{#{#CheckedTypeDef}}, !*TypeHeaps)) */ instance expandSynTypes SymbolType where expandSynTypes common_defs st=:{st_args,st_result,st_context} ets # ((st_args,st_result), ets) = expandSynTypes common_defs (st_args,st_result) ets # st_args = mapAppend (add_types_of_dictionary common_defs) st_context st_args = ({st & st_args = st_args, st_result = st_result, st_arity = length st_args, st_context = [] }, ets) where add_types_of_dictionary common_defs {tc_class = {glob_module, glob_object={ds_index}}, tc_types} # {class_arity, class_dictionary={ds_ident,ds_index}} = common_defs.[glob_module].com_class_defs.[ds_index] dict_type_symb = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident class_arity = { at_attribute = TA_Multi, at_annotation = AN_Strict, at_type = TA dict_type_symb ( map (\type -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = type }) tc_types) } instance expandSynTypes Type where expandSynTypes common_defs (TA type_symb=:{type_index={glob_object,glob_module},type_name} types) ets=:{ets_type_defs} # ({td_rhs,td_name,td_args},ets_type_defs) = ets_type_defs![glob_module].[glob_object] ets = { ets & ets_type_defs = ets_type_defs } = case td_rhs of SynType rhs_type # (type, ets_type_heaps) = substitute rhs_type.at_type (fold2St bind_var_and_attr td_args types ets.ets_type_heaps) // ---> (td_name, td_args, rhs_type.at_type)) -> expandSynTypes common_defs type { ets & ets_type_heaps = ets_type_heaps } _ # (types, ets) = expandSynTypes common_defs types ets | glob_module == cIclModIndex -> (TA type_symb types, ets) -> (TA type_symb types, collect_imported_constructors common_defs glob_module td_rhs ets) where bind_var_and_attr { atv_attribute = TA_Var {av_info_ptr}, atv_variable = {tv_info_ptr} } {at_attribute,at_type} type_heaps=:{th_vars,th_attrs} = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type), th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr at_attribute) } bind_var_and_attr { atv_variable = {tv_info_ptr}} {at_type} type_heaps=:{th_vars} = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type) } collect_imported_constructors common_defs mod_index (RecordType {rt_constructor}) ets=:{ets_collected_conses,ets_var_heap} # (ets_collected_conses, ets_var_heap) = collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs rt_constructor (ets_collected_conses, ets_var_heap) = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } collect_imported_constructors common_defs mod_index (AlgType constructors) ets=:{ets_collected_conses,ets_var_heap} # (ets_collected_conses, ets_var_heap) = foldSt (collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs) constructors (ets_collected_conses, ets_var_heap) = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } collect_imported_constructors common_defs mod_index _ ets = ets collect_imported_constructor mod_index cons_defs {ds_index} (collected_conses, var_heap) # {cons_type_ptr} = cons_defs.[ds_index] (type_info, var_heap) = readPtr cons_type_ptr var_heap | has_been_collected (sreadPtr cons_type_ptr var_heap) = (collected_conses, var_heap) = ([{ glob_module = mod_index, glob_object = ds_index } : collected_conses ], var_heap <:= (cons_type_ptr, VI_Used)) has_been_collected VI_Used = True has_been_collected (VI_ExpandedType _) = True has_been_collected _ = False expandSynTypes common_defs (arg_type --> res_type) ets # ((arg_type, res_type), ets) = expandSynTypes common_defs (arg_type, res_type) ets = (arg_type --> res_type, ets) expandSynTypes common_defs (cons_var :@: types) ets # (types, ets) = expandSynTypes common_defs types ets = (cons_var :@: types, ets) expandSynTypes common_defs type ets = (type, ets) instance expandSynTypes [a] | expandSynTypes a where expandSynTypes common_defs list ets = mapSt (expandSynTypes common_defs) list ets instance expandSynTypes (a,b) | expandSynTypes a & expandSynTypes b where expandSynTypes common_defs tuple ets = app2St (expandSynTypes common_defs, expandSynTypes common_defs) tuple ets instance expandSynTypes AType where expandSynTypes common_defs atype=:{at_type} ets # (at_type, ets) = expandSynTypes common_defs at_type ets = ({ atype & at_type = at_type }, ets) /* instance <<< InstanceInfo where (<<<) file (II_Node prods _ left right) = file <<< left <<< prods <<< right (<<<) file II_Empty = file */ instance <<< Producer where (<<<) file (PR_Function symbol index) = file <<< "F" <<< symbol.symb_name (<<<) file (PR_GeneratedFunction symbol index) = file <<< "G" <<< symbol.symb_name <<< index (<<<) file PR_Empty = file <<< 'E' (<<<) file _ = file instance <<< FunCall where (<<<) file {fc_index} = file <<< fc_index