implementation module check import StdEnv import syntax, typesupport, parse, checksupport, utilities, checktypes, transform, predef, RWSDebug import explicitimports // MW moved cIclModIndex :== 0 cPredefinedModuleIndex :== 1 convertIndex :: !Index !Index !(Optional ConversionTable) -> !Index convertIndex index table_index (Yes tables) = tables.[table_index].[index] convertIndex index table_index No = index getPredefinedGlobalSymbol symb_index module_index req_ste_kind arity cs=:{cs_predef_symbols,cs_symbol_table} #! pre_def_mod = cs_predef_symbols.[module_index] # mod_id = pre_def_mod.pds_ident #! mod_entry = sreadPtr mod_id.id_info cs_symbol_table | mod_entry.ste_kind == STE_ClosedModule # (glob_object, cs) = get_predefined_symbol symb_index req_ste_kind arity mod_entry.ste_index cs = ({ glob_object = glob_object, glob_module = mod_entry.ste_index }, cs) = ({ glob_object = { ds_ident = { id_name = "** ERRONEOUS **", id_info = nilPtr }, ds_index = NoIndex, ds_arity = arity }, glob_module = NoIndex}, { cs & cs_error = checkError mod_id "not imported" cs.cs_error}) where get_predefined_symbol symb_index req_ste_kind arity mod_index cs=:{cs_predef_symbols,cs_symbol_table,cs_error} #! pre_def_symb = cs_predef_symbols.[symb_index] # symb_id = pre_def_symb.pds_ident #! symb_entry = sreadPtr symb_id.id_info cs_symbol_table | symb_entry.ste_kind == req_ste_kind = ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs) = case symb_entry.ste_kind of STE_Imported kind module_index | mod_index == module_index && kind == req_ste_kind -> ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs) _ -> ({ ds_ident = symb_id, ds_index = NoIndex, ds_arity = arity }, { cs & cs_error = checkError symb_id "undefined" cs.cs_error }) checkTypeClasses :: !Index !Index !Int !*{#ClassDef} !*{#MemberDef} !*{#CheckedTypeDef} !*{#DclModule} !*TypeHeaps !*CheckState -> (!*{#ClassDef}, !*{#MemberDef}, !*{#CheckedTypeDef}, !*{#DclModule}, !*TypeHeaps, !*CheckState) checkTypeClasses class_index module_index upper_limit class_defs member_defs type_defs modules type_heaps=:{th_vars} cs=:{cs_symbol_table,cs_error} | class_index == size class_defs = (class_defs, member_defs, type_defs, modules, type_heaps, cs) #! class_def = class_defs.[class_index] # {class_name,class_pos,class_args,class_context,class_members} = class_def position = newPosition class_name class_pos cs_error = setErrorAdmin position cs_error (rev_class_args, cs_symbol_table, th_vars, cs_error) = add_variables_to_symbol_table cGlobalScope class_args [] cs_symbol_table th_vars cs_error cs = {cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error } (class_context, type_defs, class_defs, modules, type_heaps, cs) = checkTypeContexts class_context module_index type_defs class_defs modules { type_heaps & th_vars = th_vars } cs (class_args, cs_symbol_table) = retrieve_variables_from_symbol_table rev_class_args [] cs.cs_symbol_table class_defs = { class_defs & [class_index] = { class_def & class_context = class_context, class_args = class_args }} member_defs = set_classes_in_member_defs 0 class_members {glob_object = class_index, glob_module = module_index} member_defs // MW was = checkTypeClasses (inc class_index) module_index class_defs member_defs type_defs modules type_heaps { cs & cs_symbol_table = cs_symbol_table } = checkTypeClasses (inc class_index) module_index upper_limit class_defs member_defs type_defs modules type_heaps { cs & cs_symbol_table = cs_symbol_table } where add_variables_to_symbol_table :: !Level ![TypeVar] ![TypeVar] !*SymbolTable !*TypeVarHeap !*ErrorAdmin -> (![TypeVar],!*SymbolTable,!*TypeVarHeap,!*ErrorAdmin) add_variables_to_symbol_table level [] rev_class_args symbol_table th_vars error = (rev_class_args, symbol_table, th_vars, error) add_variables_to_symbol_table level [var=:{tv_name={id_name,id_info}} : vars] rev_class_args symbol_table th_vars error #! entry = sreadPtr id_info symbol_table | entry.ste_kind == STE_Empty || entry.ste_def_level < level # (new_var_ptr, th_vars) = newPtr TVI_Empty th_vars # symbol_table = NewEntry symbol_table id_info (STE_TypeVariable new_var_ptr) NoIndex level entry = add_variables_to_symbol_table level vars [{ var & tv_info_ptr = new_var_ptr} : rev_class_args] symbol_table th_vars error = add_variables_to_symbol_table level vars rev_class_args symbol_table th_vars (checkError id_name "(variable) already defined" error) retrieve_variables_from_symbol_table [var=:{tv_name={id_name,id_info}} : vars] class_args symbol_table #! entry = sreadPtr id_info symbol_table = retrieve_variables_from_symbol_table vars [var : class_args] (symbol_table <:= (id_info,entry.ste_previous)) retrieve_variables_from_symbol_table [] class_args symbol_table = (class_args, symbol_table) set_classes_in_member_defs mem_offset class_members glob_class_index member_defs | mem_offset == size class_members = member_defs # {ds_index} = class_members.[mem_offset] #! member_def = member_defs.[ds_index] = set_classes_in_member_defs (inc mem_offset) class_members glob_class_index { member_defs & [ds_index] = { member_def & me_class = glob_class_index }} checkSpecial :: !Index !FunType !Index !SpecialSubstitution (!Index, ![FunType], !*Heaps, !*ErrorAdmin) -> (!Special, (!Index, ![FunType], !*Heaps, !*ErrorAdmin)) checkSpecial mod_index fun_type=:{ft_type} fun_index subst (next_inst_index, special_types, heaps, error) # (special_type, hp_type_heaps) = substitute_type ft_type subst heaps.hp_type_heaps (spec_types, error) = checkAndCollectTypesOfContexts special_type.st_context error ft_type = { special_type & st_context = [] } (new_info_ptr, hp_var_heap) = newPtr VI_Empty heaps.hp_var_heap = ( { spec_index = { glob_module = mod_index, glob_object = next_inst_index }, spec_types = spec_types, spec_vars = subst.ss_vars, spec_attrs = subst.ss_attrs }, ((inc next_inst_index), [{ fun_type & ft_type = ft_type, ft_specials = SP_FunIndex fun_index, ft_type_ptr = new_info_ptr} : special_types ], { heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap }, error)) where substitute_type st=:{st_vars,st_attr_vars,st_args,st_result,st_context,st_attr_env} environment type_heaps # (st_vars, st_attr_vars, [st_result : st_args], st_context, st_attr_env, _, type_heaps) = instantiateTypes st_vars st_attr_vars [ st_result : st_args ] st_context st_attr_env environment [] type_heaps = ({st & st_vars = st_vars, st_args = st_args, st_result = st_result, st_attr_vars = st_attr_vars, st_context = st_context, st_attr_env = st_attr_env }, type_heaps) checkDclFunctions :: !Index !Index ![FunType] !v:{#CheckedTypeDef} !x:{#ClassDef} !u:{#.DclModule} !*Heaps !*CheckState -> (!Index, ![FunType], ![FunType], !z:{#CheckedTypeDef}, !y:{#ClassDef}, !w:{#DclModule}, !.Heaps, !.CheckState), [u v <= w, x <= y, u v <= z] checkDclFunctions module_index first_inst_index fun_types type_defs class_defs modules heaps cs = check_dcl_functions module_index fun_types 0 first_inst_index [] [] type_defs class_defs modules heaps cs where check_dcl_functions module_index [] fun_index next_inst_index collected_funtypes collected_instances type_defs class_defs modules heaps cs = (next_inst_index, collected_funtypes, collected_instances, type_defs, class_defs, modules, heaps, cs) check_dcl_functions module_index [fun_type=:{ft_symb,ft_type,ft_pos,ft_specials} : fun_types] fun_index next_inst_index collected_funtypes collected_instances type_defs class_defs modules heaps cs # position = newPosition ft_symb ft_pos cs = { cs & cs_error = setErrorAdmin position cs.cs_error } (ft_type, ft_specials, type_defs, class_defs, modules, hp_type_heaps, cs) = checkSymbolType module_index ft_type ft_specials type_defs class_defs modules heaps.hp_type_heaps cs (spec_types, next_inst_index, collected_instances, heaps, cs_error) = check_specials module_index { fun_type & ft_type = ft_type } fun_index ft_specials next_inst_index collected_instances { heaps & hp_type_heaps = hp_type_heaps } cs.cs_error (new_info_ptr, hp_var_heap) = newPtr VI_Empty heaps.hp_var_heap = check_dcl_functions module_index fun_types (inc fun_index) next_inst_index [ { fun_type & ft_type = ft_type, ft_specials = spec_types, ft_type_ptr = new_info_ptr } : collected_funtypes] collected_instances type_defs class_defs modules { heaps & hp_var_heap = hp_var_heap } { cs & cs_error = cs_error } check_specials :: !Index !FunType !Index !Specials !Index ![FunType] !*Heaps !*ErrorAdmin -> (!Specials, !Index, ![FunType], !*Heaps, !*ErrorAdmin) check_specials mod_index fun_type fun_index (SP_Substitutions substs) next_inst_index all_instances heaps error # (list_of_specials, (next_inst_index, all_instances, heaps, cs_error)) = mapSt (checkSpecial mod_index fun_type fun_index) substs (next_inst_index, all_instances, heaps, error) = (SP_ContextTypes list_of_specials, next_inst_index, all_instances, heaps, cs_error) check_specials mod_index fun_type fun_index SP_None next_inst_index all_instances heaps error = (SP_None, next_inst_index, all_instances, heaps, error) checkSpecialsOfInstances :: !Index !Index ![ClassInstance] !Index ![ClassInstance] ![FunType] {# FunType} *{! [Special] } !*Heaps !*ErrorAdmin -> (!Index, ![ClassInstance], ![FunType], !*{! [Special]}, !*Heaps, !*ErrorAdmin) checkSpecialsOfInstances mod_index first_mem_index [class_inst=:{ins_members,ins_specials} : class_insts] next_inst_index all_class_instances all_specials new_inst_defs all_spec_types heaps error = case ins_specials of SP_TypeOffset type_offset # (next_inst_index, rev_mem_specials, all_specials, all_spec_types, heaps, error) = check_and_build_members mod_index first_mem_index 0 ins_members type_offset next_inst_index [] all_specials new_inst_defs all_spec_types heaps error class_inst = { class_inst & ins_members = { mem \\ mem <- reverse rev_mem_specials } } -> checkSpecialsOfInstances mod_index first_mem_index class_insts next_inst_index [class_inst : all_class_instances] all_specials new_inst_defs all_spec_types heaps error SP_None -> checkSpecialsOfInstances mod_index first_mem_index class_insts next_inst_index [class_inst : all_class_instances] all_specials new_inst_defs all_spec_types heaps error where check_and_build_members mod_index first_mem_index member_offset ins_members type_offset next_inst_index rev_mem_specials all_specials inst_spec_defs all_spec_types heaps error | member_offset < size ins_members # member = ins_members.[member_offset] member_index = member.ds_index spec_member_index = member_index - first_mem_index #! spec_types = all_spec_types.[spec_member_index] # mem_inst = inst_spec_defs.[spec_member_index] (SP_Substitutions specials) = mem_inst.ft_specials env = specials !! type_offset member = { member & ds_index = next_inst_index } (spec_type, (next_inst_index, all_specials, heaps, error)) = checkSpecial mod_index mem_inst member_index env (next_inst_index, all_specials, heaps, error) all_spec_types = { all_spec_types & [spec_member_index] = [ spec_type : spec_types] } = check_and_build_members mod_index first_mem_index (inc member_offset) ins_members type_offset next_inst_index [ member : rev_mem_specials ] all_specials inst_spec_defs all_spec_types heaps error = (next_inst_index, rev_mem_specials, all_specials, all_spec_types, heaps, error) checkSpecialsOfInstances mod_index first_mem_index [] next_inst_index all_class_instances all_specials inst_spec_defs all_spec_types heaps error = (next_inst_index, all_class_instances, all_specials, all_spec_types, heaps, error) /* MW was checkMemberTypes :: !Index !*{#MemberDef} !*{#CheckedTypeDef} !*{#ClassDef} !*{#DclModule} !*TypeHeaps !*VarHeap !*CheckState -> (!*{#MemberDef}, !*{#CheckedTypeDef}, !*{#ClassDef}, !*{#DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState) checkMemberTypes module_index member_defs type_defs class_defs modules type_heaps var_heap cs #! nr_of_members = size member_defs = iFoldSt (check_class_member module_index) 0 nr_of_members (member_defs, type_defs, class_defs, modules, type_heaps, var_heap, cs) */ checkMemberTypes :: !Index !Int !*{#MemberDef} !*{#CheckedTypeDef} !*{#ClassDef} !*{#DclModule} !*TypeHeaps !*VarHeap !*CheckState -> (!*{#MemberDef}, !*{#CheckedTypeDef}, !*{#ClassDef}, !*{#DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState) checkMemberTypes module_index nr_of_members member_defs type_defs class_defs modules type_heaps var_heap cs = iFoldSt (check_class_member module_index) 0 nr_of_members (member_defs, type_defs, class_defs, modules, type_heaps, var_heap, cs) where check_class_member module_index member_index (member_defs, type_defs, class_defs, modules, type_heaps, var_heap, cs) # (member_def=:{me_symb,me_type,me_pos}, member_defs) = member_defs![member_index] position = newPosition me_symb me_pos cs = { cs & cs_error = setErrorAdmin position cs.cs_error } (me_type, _, type_defs, class_defs, modules, type_heaps, cs) = checkSymbolType module_index me_type SP_None type_defs class_defs modules type_heaps cs me_class_vars = map (\(TV type_var) -> type_var) (hd me_type.st_context).tc_types (me_type_ptr, var_heap) = newPtr VI_Empty var_heap = ({ member_defs & [member_index] = { member_def & me_type = me_type, me_class_vars = me_class_vars, me_type_ptr = me_type_ptr }}, type_defs, class_defs, modules, type_heaps, var_heap, cs) :: InstanceSymbols = { is_type_defs :: !.{# CheckedTypeDef} , is_class_defs :: !.{# ClassDef} , is_member_defs :: !.{# MemberDef} , is_modules :: !.{# DclModule} } checkInstanceDefs :: !Index !*{#ClassInstance} !u:{#CheckedTypeDef} !u:{#ClassDef} !u:{#MemberDef} !u:{#DclModule} !*TypeHeaps !*CheckState -> (!.{#ClassInstance},!u:{#CheckedTypeDef},!u:{#ClassDef},!u:{#MemberDef},!u:{#DclModule},!.TypeHeaps,!.CheckState) checkInstanceDefs mod_index instance_defs type_defs class_defs member_defs modules type_heaps cs # is = { is_type_defs = type_defs, is_class_defs = class_defs, is_member_defs = member_defs, is_modules = modules } (instance_defs, is, type_heaps, cs) = check_instance_defs 0 mod_index instance_defs is type_heaps cs = (instance_defs, is.is_type_defs, is.is_class_defs, is.is_member_defs, is.is_modules, type_heaps, cs) where check_instance_defs :: !Index !Index !*{# ClassInstance} !u:InstanceSymbols !*TypeHeaps !*CheckState -> (!*{# ClassInstance},!u:InstanceSymbols,!*TypeHeaps,!*CheckState) check_instance_defs inst_index mod_index instance_defs is type_heaps cs | inst_index < size instance_defs #! instance_def = instance_defs.[inst_index] # (instance_def, is, type_heaps, cs) = check_instance mod_index instance_def is type_heaps cs = check_instance_defs (inc inst_index) mod_index { instance_defs & [inst_index] = instance_def } is type_heaps cs = (instance_defs, is, type_heaps, cs) check_instance :: !Index !ClassInstance !u:InstanceSymbols !*TypeHeaps !*CheckState -> (!ClassInstance, !u:InstanceSymbols, !*TypeHeaps, !*CheckState) check_instance module_index ins=:{ins_members,ins_class={glob_object = class_name =: {ds_ident = {id_name,id_info},ds_arity}},ins_type,ins_specials,ins_pos,ins_ident} is=:{is_class_defs,is_modules} type_heaps cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # (class_index, class_mod_index, class_def, is_class_defs, is_modules) = get_class_def entry module_index is_class_defs is_modules is = { is & is_class_defs = is_class_defs, is_modules = is_modules } cs = pushErrorAdmin (newPosition ins_ident ins_pos) cs | class_index <> NotFound | class_def.class_arity == ds_arity # (ins_type, ins_specials, is_type_defs, is_class_defs, is_modules, type_heaps, cs) = checkInstanceType module_index ins_type ins_specials is.is_type_defs is.is_class_defs is.is_modules type_heaps cs ins_class = { glob_object = { class_name & ds_index = class_index }, glob_module = class_mod_index} is = { is & is_type_defs = is_type_defs, is_class_defs = is_class_defs, is_modules = is_modules } = ({ins & ins_class = ins_class, ins_type = ins_type, ins_specials = ins_specials}, is, type_heaps, popErrorAdmin cs) = ( ins , is , type_heaps , popErrorAdmin { cs & cs_error = checkError id_name ("wrong arity: expected "+++toString class_def.class_arity+++" found "+++toString ds_arity) cs.cs_error } ) = (ins, is, type_heaps, popErrorAdmin { cs & cs_error = checkError id_name "class undefined" cs.cs_error }) get_class_def :: !SymbolTableEntry !Index v:{# ClassDef} u:{# DclModule} -> (!Index,!Index,ClassDef,!v:{# ClassDef},!u:{# DclModule}) get_class_def {ste_kind = STE_Class, ste_index} mod_index class_defs modules #! class_def = class_defs.[ste_index] = (ste_index, mod_index, class_def, class_defs, modules) get_class_def {ste_kind = STE_Imported STE_Class dcl_index, ste_index, ste_def_level} mod_index class_defs modules #! dcl_mod = modules.[dcl_index] # class_def = dcl_mod.dcl_common.com_class_defs.[ste_index] = (ste_index, dcl_index, class_def, class_defs, modules) get_class_def _ mod_index class_defs modules = (NotFound, cIclModIndex, abort "no class definition", class_defs, modules) checkInstances :: !Index !*CommonDefs !u:{# DclModule} !*VarHeap !*TypeHeaps !*CheckState -> (![(Index,SymbolType)], !*CommonDefs, !u:{# DclModule}, !*VarHeap , !*TypeHeaps, !*CheckState) checkInstances mod_index icl_common=:{com_instance_defs,com_class_defs,com_member_defs} modules var_heap type_heaps cs=:{cs_error} | cs_error.ea_ok # (instance_types, com_instance_defs, com_class_defs, com_member_defs, modules, var_heap, type_heaps, cs) = check_instances 0 mod_index [] com_instance_defs com_class_defs com_member_defs modules var_heap type_heaps cs = (instance_types, { icl_common & com_instance_defs = com_instance_defs,com_class_defs = com_class_defs,com_member_defs = com_member_defs }, modules, var_heap, type_heaps, cs) = ([], icl_common, modules, var_heap, type_heaps, cs) where check_instances :: !Index !Index ![(Index,SymbolType)] !x:{# ClassInstance} !w:{# ClassDef} !v:{# MemberDef} !u:{# DclModule} !*VarHeap !*TypeHeaps !*CheckState -> (![(Index,SymbolType)], !x:{# ClassInstance}, !w:{# ClassDef}, !v:{# MemberDef}, !u:{# DclModule}, !*VarHeap, !*TypeHeaps, !*CheckState) check_instances inst_index mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps cs | inst_index < size instance_defs #! {ins_class,ins_members,ins_type} = instance_defs.[inst_index] # ({class_members,class_name}, class_defs, modules) = getClassDef ins_class mod_index class_defs modules class_size = size class_members | class_size == size ins_members # (instance_types, member_defs, modules, var_heap, type_heaps, cs) = check_member_instances mod_index ins_class.glob_module 0 class_size ins_members class_members ins_type instance_types member_defs modules var_heap type_heaps cs = check_instances (inc inst_index) mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps cs = check_instances (inc inst_index) mod_index instance_types instance_defs class_defs member_defs modules var_heap type_heaps { cs & cs_error = checkError class_name "different number of members specified" cs.cs_error } = (instance_types, instance_defs, class_defs, member_defs, modules, var_heap, type_heaps, cs) /* check_member_instances :: !Index !Index ![DefinedSymbol] ![DefinedSymbol] !InstanceType ![TypeVar] ![(Index,SymbolType)] !v:{# MemberDef} !u:{# DclModule} !*TypeHeaps !*CheckState -> (![(Index,SymbolType)], !v:{# MemberDef},!u:{# DclModule},!*TypeHeaps,!*CheckState) */ check_member_instances module_index member_mod_index mem_offset class_size ins_members class_members ins_type instance_types member_defs modules var_heap type_heaps cs | mem_offset == class_size = (instance_types, member_defs, modules, var_heap, type_heaps, cs) # ins_member = ins_members.[mem_offset] class_member = class_members.[mem_offset] | ins_member.ds_ident <> class_member.ds_ident = check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type instance_types member_defs modules var_heap type_heaps { cs & cs_error = checkError class_member.ds_ident "instance of class member expected" cs.cs_error} | ins_member.ds_arity <> class_member.ds_arity = check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type instance_types member_defs modules var_heap type_heaps { cs & cs_error = checkError class_member.ds_ident "used with wrong arity" cs.cs_error} # ({me_type,me_class_vars}, member_defs, modules) = getMemberDef member_mod_index class_member.ds_index module_index member_defs modules (instance_type, _, type_heaps) = determineTypeOfMemberInstance me_type me_class_vars ins_type SP_None type_heaps (st_context, var_heap) = initializeContextVariables instance_type.st_context var_heap = check_member_instances module_index member_mod_index (inc mem_offset) class_size ins_members class_members ins_type [ (ins_member.ds_index, { instance_type & st_context = st_context }) : instance_types ] member_defs modules var_heap type_heaps cs getClassDef :: !(Global DefinedSymbol) !Int !u:{#ClassDef} !v:{#DclModule} -> (!ClassDef,!u:{#ClassDef},!v:{#DclModule}) getClassDef {glob_module, glob_object={ds_ident, ds_index}} mod_index class_defs modules | glob_module == mod_index #! class_def = class_defs.[ds_index] = (class_def, class_defs, modules) #! dcl_mod = modules.[glob_module] = (dcl_mod.dcl_common.com_class_defs.[ds_index], class_defs, modules) getMemberDef :: !Int Int !Int !u:{#MemberDef} !v:{#DclModule} -> (!MemberDef,!u:{#MemberDef},!v:{#DclModule}) getMemberDef mem_mod mem_index mod_index member_defs modules | mem_mod == mod_index #! member_def = member_defs.[mem_index] = (member_def, member_defs, modules) #! dcl_mod = modules.[mem_mod] = (dcl_mod.dcl_common.com_member_defs.[mem_index], member_defs, modules) instantiateTypes :: ![TypeVar] ![AttributeVar] !types ![TypeContext] ![AttrInequality] !SpecialSubstitution ![SpecialSubstitution] !*TypeHeaps -> (![TypeVar], ![AttributeVar], !types , ![TypeContext], ![AttrInequality], ![SpecialSubstitution], !*TypeHeaps) | substitute types instantiateTypes old_type_vars old_attr_vars types type_contexts attr_env {ss_environ, ss_vars, ss_attrs, ss_context} special_subst_list type_heaps=:{th_vars, th_attrs} # th_vars = clear_vars old_type_vars th_vars (new_type_vars, th_vars) = foldSt build_var_subst ss_vars ([], th_vars) (new_attr_vars, th_attrs) = foldSt build_attr_subst ss_attrs ([], th_attrs) type_heaps = foldSt build_type_subst ss_environ { type_heaps & th_vars = th_vars, th_attrs = th_attrs } (new_ss_context, type_heaps) = substitute ss_context type_heaps (inst_vars, th_vars) = foldSt determine_free_var old_type_vars (new_type_vars, type_heaps.th_vars) (inst_attr_vars, th_attrs) = foldSt build_attr_subst old_attr_vars (new_attr_vars, type_heaps.th_attrs) (inst_types, type_heaps) = substitute types { type_heaps & th_vars = th_vars, th_attrs = th_attrs } (inst_contexts, type_heaps) = substitute type_contexts type_heaps (inst_attr_env, type_heaps) = substitute attr_env type_heaps (special_subst_list, th_vars) = mapSt adjust_special_subst special_subst_list type_heaps.th_vars = (inst_vars, inst_attr_vars, inst_types, inst_contexts ++ new_ss_context, inst_attr_env, special_subst_list, { type_heaps & th_vars = th_vars }) where clear_vars type_vars type_var_heap = foldSt (\tv -> writePtr tv.tv_info_ptr TVI_Empty) type_vars type_var_heap determine_free_var tv=:{tv_info_ptr} (free_vars, type_var_heap) # (type_var_info, type_var_heap) = readPtr tv_info_ptr type_var_heap = case type_var_info of TVI_Empty -> build_var_subst tv (free_vars, type_var_heap) _ -> (free_vars, type_var_heap) build_type_subst {bind_src,bind_dst} type_heaps # (bind_src, type_heaps) = substitute bind_src type_heaps = { type_heaps & th_vars = writePtr bind_dst.tv_info_ptr (TVI_Type bind_src) type_heaps.th_vars} build_var_subst var (free_vars, type_var_heap) # (new_info_ptr, type_var_heap) = newPtr TVI_Empty type_var_heap new_fv = { var & tv_info_ptr = new_info_ptr} = ([ new_fv : free_vars ], writePtr var.tv_info_ptr (TVI_Type (TV new_fv)) type_var_heap) build_attr_subst attr (free_attrs, attr_var_heap) # (new_info_ptr, attr_var_heap) = newPtr AVI_Empty attr_var_heap new_attr = { attr & av_info_ptr = new_info_ptr} = ([new_attr : free_attrs], writePtr attr.av_info_ptr (AVI_Attr (TA_Var new_attr)) attr_var_heap) adjust_special_subst special_subst=:{ss_environ} type_var_heap # (ss_environ, type_var_heap) = mapSt adjust_special_bind ss_environ type_var_heap = ({ special_subst & ss_environ = ss_environ }, type_var_heap) adjust_special_bind bind=:{bind_dst={tv_info_ptr}} type_var_heap # (TVI_Type (TV new_tv), type_var_heap) = readPtr tv_info_ptr type_var_heap = ({ bind & bind_dst = new_tv }, type_var_heap) substituteInstanceType :: !InstanceType !SpecialSubstitution !*TypeHeaps -> (!InstanceType,!*TypeHeaps) substituteInstanceType it=:{it_vars,it_attr_vars,it_types,it_context} environment type_heaps # (it_vars, it_attr_vars, it_types, it_context, _, _, type_heaps) = instantiateTypes it_vars it_attr_vars it_types it_context [] environment [] type_heaps = ({it & it_vars = it_vars, it_types = it_types, it_attr_vars = it_attr_vars, it_context = it_context }, type_heaps) hasTypeVariables [] = False hasTypeVariables [TV tvar : types] = True hasTypeVariables [ _ : types] = hasTypeVariables types determineTypeOfMemberInstance :: !SymbolType ![TypeVar] !InstanceType !Specials !*TypeHeaps -> (!SymbolType, !Specials, !*TypeHeaps) determineTypeOfMemberInstance mem_st class_vars {it_types,it_vars,it_attr_vars,it_context} specials type_heaps # env = { ss_environ = foldl2 (\binds var type -> [ {bind_src = type, bind_dst = var} : binds]) [] class_vars it_types, ss_context = it_context, ss_vars = it_vars, ss_attrs = it_attr_vars} = determine_type_of_member_instance mem_st env specials type_heaps where determine_type_of_member_instance mem_st=:{st_context} env (SP_Substitutions substs) type_heaps # (mem_st, substs, type_heaps) = substitute_symbol_type { mem_st & st_context = tl st_context } env substs type_heaps = (mem_st, SP_Substitutions substs, type_heaps) determine_type_of_member_instance mem_st=:{st_context} env SP_None type_heaps # (mem_st, _, type_heaps) = substitute_symbol_type { mem_st & st_context = tl st_context } env [] type_heaps = (mem_st, SP_None, type_heaps) substitute_symbol_type st=:{st_vars,st_attr_vars,st_args,st_result,st_context,st_attr_env} environment specials type_heaps # (st_vars, st_attr_vars, [st_result : st_args], st_context, st_attr_env, specials, type_heaps) = instantiateTypes st_vars st_attr_vars [ st_result : st_args ] st_context st_attr_env environment specials type_heaps = ({st & st_vars = st_vars, st_args = st_args, st_result = st_result, st_attr_vars = st_attr_vars, st_context = st_context, st_attr_env = st_attr_env }, specials, type_heaps) determineTypesOfInstances :: !Index !Index !*CommonDefs !*{#DclModule} !*TypeHeaps !*VarHeap !*CheckState -> (![FunType], !Index, ![ClassInstance], !*CommonDefs, !*{#DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState) determineTypesOfInstances first_memb_inst_index mod_index dcl_common=:{com_instance_defs,com_class_defs,com_member_defs} modules type_heaps var_heap cs=:{cs_error} | cs_error.ea_ok #! nr_of_class_instances = size com_instance_defs # (memb_inst_defs, next_mem_inst_index, all_class_specials, com_class_defs, com_member_defs, modules, com_instance_defs, type_heaps, var_heap, cs_error) = determine_types_of_instances 0 nr_of_class_instances first_memb_inst_index mod_index [] com_class_defs com_member_defs modules com_instance_defs type_heaps var_heap cs_error = (memb_inst_defs, next_mem_inst_index, all_class_specials, { dcl_common & com_instance_defs = com_instance_defs,com_class_defs = com_class_defs, com_member_defs = com_member_defs }, modules, type_heaps, var_heap, { cs & cs_error = cs_error }) = ([], first_memb_inst_index, [], dcl_common, modules, type_heaps, var_heap, cs) where determine_types_of_instances :: !Index !Index !Index !Index ![ClassInstance] !v:{#ClassDef} !w:{#MemberDef} !x:{#DclModule} !*{#ClassInstance} !*TypeHeaps !*VarHeap !*ErrorAdmin -> (![FunType], !Index, ![ClassInstance], !v:{#ClassDef}, !w:{#MemberDef}, !x:{#DclModule}, !*{#ClassInstance}, !*TypeHeaps, !*VarHeap, !*ErrorAdmin) determine_types_of_instances inst_index next_class_inst_index next_mem_inst_index mod_index all_class_specials class_defs member_defs modules instance_defs type_heaps var_heap error | inst_index < size instance_defs #! instance_def = instance_defs.[inst_index] # {ins_class,ins_pos,ins_type,ins_specials} = instance_def ({class_members}, class_defs, modules) = getClassDef ins_class mod_index class_defs modules class_size = size class_members (ins_members, memb_inst_defs1, member_defs, modules, type_heaps, var_heap) = determine_instance_symbols_and_types next_mem_inst_index 0 mod_index ins_class.glob_module class_size class_members ins_type ins_specials ins_pos member_defs modules type_heaps var_heap instance_def = { instance_def & ins_members = { member \\ member <- ins_members }} (ins_specials, next_class_inst_index, all_class_specials, type_heaps, error) = check_instance_specials mod_index instance_def inst_index ins_specials next_class_inst_index all_class_specials type_heaps error (memb_inst_defs2, next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error) = determine_types_of_instances (inc inst_index) next_class_inst_index (next_mem_inst_index + class_size) mod_index all_class_specials class_defs member_defs modules { instance_defs & [inst_index] = { instance_def & ins_specials = ins_specials }} type_heaps var_heap error = (memb_inst_defs1 ++ memb_inst_defs2, next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error) = ([], next_mem_inst_index, all_class_specials, class_defs, member_defs, modules, instance_defs, type_heaps, var_heap, error) determine_instance_symbols_and_types :: !Index !Index !Index !Index !Int !{#DefinedSymbol} !InstanceType !Specials !Position !w:{#MemberDef} !u:{#DclModule} !*TypeHeaps !*VarHeap -> (![DefinedSymbol], ![FunType], !w:{#MemberDef}, !u:{#DclModule}, !*TypeHeaps, !*VarHeap) determine_instance_symbols_and_types first_inst_index mem_offset module_index member_mod_index class_size class_members ins_type ins_specials ins_pos member_defs modules type_heaps var_heap | mem_offset == class_size = ([], [], member_defs, modules, type_heaps, var_heap) # class_member = class_members.[mem_offset] ({me_symb,me_type,me_priority,me_class_vars}, member_defs, modules) = getMemberDef member_mod_index class_member.ds_index module_index member_defs modules (instance_type, new_ins_specials, type_heaps) = determineTypeOfMemberInstance me_type me_class_vars ins_type ins_specials type_heaps (new_info_ptr, var_heap) = newPtr VI_Empty var_heap inst_def = MakeNewFunctionType me_symb me_type.st_arity me_priority instance_type ins_pos new_ins_specials new_info_ptr (inst_symbols, memb_inst_defs, member_defs, modules, type_heaps, var_heap) = determine_instance_symbols_and_types first_inst_index (inc mem_offset) module_index member_mod_index class_size class_members ins_type ins_specials ins_pos member_defs modules type_heaps var_heap = ([{ class_member & ds_index = first_inst_index + mem_offset } : inst_symbols], [inst_def : memb_inst_defs], member_defs, modules, type_heaps, var_heap) check_instance_specials :: !Index !ClassInstance !Index !Specials !Index ![ClassInstance] !*TypeHeaps !*ErrorAdmin -> (!Specials, !Index, ![ClassInstance], !*TypeHeaps, !*ErrorAdmin) check_instance_specials mod_index inst_type inst_index (SP_Substitutions substs) next_inst_index all_instances type_heaps error # (list_of_specials, next_inst_index, all_instances, type_heaps, error) = check_specials mod_index inst_type 0 substs [] next_inst_index all_instances type_heaps error = (SP_ContextTypes list_of_specials, next_inst_index, all_instances, type_heaps, error) where check_specials mod_index inst=:{ins_type} type_offset [ subst : substs ] list_of_specials next_inst_index all_instances type_heaps error # (special_type, type_heaps) = substituteInstanceType ins_type subst type_heaps (spec_types, error) = checkAndCollectTypesOfContexts special_type.it_context error special = { spec_index = { glob_module = mod_index, glob_object = next_inst_index }, spec_types = spec_types, spec_vars = subst.ss_vars, spec_attrs = subst.ss_attrs } = check_specials mod_index inst (inc type_offset) substs [ special : list_of_specials ] (inc next_inst_index) [{ inst & ins_type = { special_type & it_context = [] }, ins_specials = SP_TypeOffset type_offset} : all_instances ] type_heaps error check_specials mod_index inst=:{ins_type} type_offset [] list_of_specials next_inst_index all_instances type_heaps error = (list_of_specials, next_inst_index, all_instances, type_heaps, error) check_instance_specials mod_index fun_type fun_index SP_None next_inst_index all_instances type_heaps error = (SP_None, next_inst_index, all_instances, type_heaps, error) checkAndCollectTypesOfContexts type_contexts error = mapSt check_and_collect_context_types type_contexts error where check_and_collect_context_types {tc_class={glob_object={ds_ident}},tc_types} error | hasTypeVariables tc_types = (tc_types, checkError ds_ident.id_name "illegal specialization" error) = (tc_types, error) /* retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous } # imported_selectors = retrieveSelectorIndexes mod_index ste_previous = mapAppend (\ sel -> { sel & glob_module = mod_index }) selector_list [{glob_module = mod_index, glob_object = ste_index } : imported_selectors ] retrieveSelectorIndexes mod_index {ste_kind = STE_Imported (STE_Selector selector_list) dcl_mod_index, ste_index } = [ { glob_object = ste_index, glob_module = dcl_mod_index } : selector_list ] retrieveSelectorIndexes mod_index off_kind = [] */ retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous } = map (adjust_mod_index mod_index) selector_list where adjust_mod_index mod_index selector=:{glob_module} | glob_module == NoIndex = { selector & glob_module = mod_index } = selector retrieveSelectorIndexes mod_index off_kind = [] checkFields :: !Index ![FieldAssignment] !(Optional Ident) !u:ExpressionInfo !*CheckState -> (!Optional ((Global DefinedSymbol), Index, [Bind ParsedExpr (Global FieldSymbol)]), !u:ExpressionInfo, !*CheckState) checkFields mod_index field_ass opt_type e_info=:{ef_selector_defs,ef_type_defs,ef_modules} cs # (ok, field_ass, cs) = check_fields field_ass cs | ok # (opt_type_def, ef_selector_defs, ef_type_defs, ef_modules, cs) = determine_record_type mod_index opt_type field_ass ef_selector_defs ef_type_defs ef_modules cs e_info = { e_info & ef_selector_defs = ef_selector_defs, ef_type_defs = ef_type_defs, ef_modules = ef_modules} = case opt_type_def of Yes ({td_index,td_rhs = RecordType {rt_constructor,rt_fields}}, type_mod_index) # (field_exprs, cs_error) = check_and_rearrange_fields type_mod_index 0 rt_fields field_ass cs.cs_error -> (Yes ({ glob_object = rt_constructor, glob_module = type_mod_index }, td_index, field_exprs), e_info, { cs & cs_error = cs_error }) No -> (No, e_info, cs) = (No, e_info, cs) where check_fields [ bind=:{bind_dst} : field_ass ] cs=:{cs_symbol_table,cs_error} #! entry = sreadPtr bind_dst.id_info cs_symbol_table # fields = retrieveSelectorIndexes mod_index entry | isEmpty fields = (False, [], { cs & cs_error = checkError bind_dst "not defined as a record field" cs_error }) # (ok, field_ass, cs) = check_fields field_ass cs = (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs) check_fields [] cs = (True, [], cs) try_to_get_unique_field [] = No try_to_get_unique_field [ {bind_dst = (field_id, [field])} : fields ] = Yes field try_to_get_unique_field [ _ : fields ] = try_to_get_unique_field fields determine_record_type mod_index (Yes type_id=:{id_info}) _ selector_defs type_defs modules cs=:{cs_symbol_table, cs_error} #! entry = sreadPtr id_info cs_symbol_table # (type_index, type_mod_index) = retrieveGlobalDefinition entry STE_Type mod_index | type_index <> NotFound | mod_index == type_mod_index #! type_def = type_defs.[type_index] = (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs) # (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[type_index] = (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs) = (No, selector_defs, type_defs, modules, { cs & cs_error = checkError type_id " not defined" cs_error}) determine_record_type mod_index No fields selector_defs type_defs modules cs=:{cs_error} # succ = try_to_get_unique_field fields = case succ of Yes {glob_module, glob_object} | glob_module == mod_index #! selector_def = selector_defs.[glob_object] type_def = type_defs.[selector_def.sd_type_index] -> (Yes (type_def, glob_module), selector_defs, type_defs, modules, cs) #! {dcl_common={com_selector_defs,com_type_defs}} = modules.[glob_module] #! selector_def = com_selector_defs.[glob_object] type_def = com_type_defs.[selector_def.sd_type_index] -> (Yes (type_def,glob_module), selector_defs, type_defs, modules, cs) No -> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError "" " could not determine the type of this record" cs.cs_error }) check_and_rearrange_fields mod_index field_index fields field_ass cs_error | field_index < size fields # (field_expr, field_ass) = look_up_field mod_index fields.[field_index] field_ass (field_exprs, cs_error) = check_and_rearrange_fields mod_index (inc field_index) fields field_ass cs_error = ([field_expr : field_exprs], cs_error) | isEmpty field_ass = ([], cs_error) = ([], foldSt field_error field_ass cs_error) where look_up_field mod_index field [] = ({bind_src = PE_WildCard, bind_dst = { glob_object = field, glob_module = mod_index }}, []) look_up_field mod_index field=:{fs_index} [ass=:{bind_src, bind_dst = (_, fields)} : field_ass] | field_list_contains_field mod_index fs_index fields = ({bind_src = bind_src, bind_dst = { glob_module = mod_index, glob_object = field}}, field_ass) # (field_expr, field_ass) = look_up_field mod_index field field_ass = (field_expr, [ass : field_ass]) field_list_contains_field mod_index fs_index [] = False field_list_contains_field mod_index fs_index [{glob_object,glob_module} : fields] = mod_index == glob_module && fs_index == glob_object || field_list_contains_field mod_index fs_index fields field_error {bind_dst=(field_id,_)} error = checkError field_id " field is either multiply used or not a part of this record" error :: ExpressionInfo = { ef_type_defs :: !.{# CheckedTypeDef} , ef_selector_defs :: !.{# SelectorDef} , ef_cons_defs :: !.{# ConsDef} , ef_member_defs :: !.{# MemberDef} , ef_class_defs :: !.{# ClassDef} , ef_modules :: !.{# DclModule} } :: ExpressionState = { es_expression_heap :: !.ExpressionHeap , es_var_heap :: !.VarHeap , es_type_heaps :: !.TypeHeaps , es_calls :: ![FunCall] , es_dynamics :: ![ExprInfoPtr] , es_fun_defs :: !.{# FunDef} } :: ExpressionInput = { ei_expr_level :: !Level , ei_fun_index :: !Index , ei_fun_level :: !Level , ei_mod_index :: !Index // , ei_fun_kind :: !FunKind } cIsInExpressionList :== True cIsNotInExpressionList :== False :: UnfoldMacroState = { ums_var_heap :: !.VarHeap , ums_modules :: !.{# DclModule} , ums_cons_defs :: !.{# ConsDef} , ums_error :: !.ErrorAdmin } unfoldPatternMacro mod_index macro_index macro_args opt_var ps=:{ps_var_heap, ps_fun_defs} modules cons_defs error # (macro, ps_fun_defs) = ps_fun_defs![macro_index] = case macro.fun_body of TransformedBody {tb_args,tb_rhs} | no_sharing tb_args # ums = { ums_var_heap = fold2St bind_var tb_args macro_args ps_var_heap, ums_modules = modules, ums_cons_defs = cons_defs, ums_error = error } (pattern, {ums_var_heap,ums_modules,ums_cons_defs,ums_error}) = unfold_pattern_macro mod_index macro.fun_symb opt_var tb_rhs ums -> (pattern, { ps_fun_defs = ps_fun_defs, ps_var_heap = ums_var_heap}, ums_modules, ums_cons_defs, ums_error) -> (AP_Empty macro.fun_symb, { ps_fun_defs = ps_fun_defs, ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_symb " sharing not allowed" error) _ -> (AP_Empty macro.fun_symb, { ps_fun_defs = ps_fun_defs, ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_symb " illegal macro in pattern" error) where no_sharing [{fv_count} : args] = fv_count <= 1 && no_sharing args no_sharing [] = True bind_var {fv_info_ptr} pattern ps_var_heap = ps_var_heap <:= (fv_info_ptr, VI_Pattern pattern) unfold_pattern_macro mod_index macro_ident _ (Var {var_name,var_info_ptr}) ums=:{ums_var_heap} # (VI_Pattern pattern, ums_var_heap) = readPtr var_info_ptr ums_var_heap = (pattern, { ums & ums_var_heap = ums_var_heap}) unfold_pattern_macro mod_index macro_ident opt_var (App {app_symb,app_args}) ums = unfold_application mod_index macro_ident opt_var app_symb app_args ums where unfold_application mod_index macro_ident opt_var {symb_kind=SK_Constructor {glob_module,glob_object},symb_name,symb_arity} args ums=:{ums_cons_defs, ums_modules,ums_error} # (cons_def, cons_index, ums_cons_defs, ums_modules) = get_cons_def mod_index glob_module glob_object ums_cons_defs ums_modules | cons_def.cons_type.st_arity == symb_arity # (patterns, ums) = mapSt (unfold_pattern_macro mod_index macro_ident No) app_args { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules } cons_symbol = { glob_object = MakeDefinedSymbol symb_name cons_index symb_arity, glob_module = glob_module } = (AP_Algebraic cons_symbol cons_def.cons_type_index patterns opt_var, ums) = (AP_Empty cons_def.cons_symb, { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules, ums_error = checkError cons_def.cons_symb " missing argument(s)" ums_error }) get_cons_def mod_index cons_mod cons_index cons_defs modules | mod_index == cons_mod # (cons_def, cons_defs) = cons_defs![cons_index] = (cons_def, cons_index, cons_defs, modules) #! {dcl_common,dcl_conversions} = modules.[cons_mod] #! cons_def = dcl_common.com_cons_defs.[cons_index] = (cons_def, convertIndex cons_index (toInt STE_Constructor) dcl_conversions, cons_defs, modules) unfold_pattern_macro mod_index macro_ident opt_var (BasicExpr bv bt) ums = (AP_Basic bv opt_var, ums) unfold_pattern_macro mod_index macro_ident opt_var expr ums=:{ums_error} = (AP_Empty macro_ident, { ums & ums_error = checkError macro_ident " illegal rhs for a pattern macro" ums_error }) checkPatternVariable :: !Level !SymbolTableEntry !Ident !VarInfoPtr !*CheckState -> !*CheckState checkPatternVariable def_level entry=:{ste_def_level,ste_kind} ident=:{id_info} var_info cs=:{cs_symbol_table,cs_error} | ste_kind == STE_Empty || def_level > ste_def_level # entry = {ste_kind = STE_Variable var_info, ste_index = NoIndex, ste_def_level = def_level, ste_previous = entry } = { cs & cs_symbol_table = cs_symbol_table <:= (id_info,entry)} = { cs & cs_error = checkError ident "(pattern variable) already defined" cs_error } checkPatternConstructor :: !Index !Bool !SymbolTableEntry !Ident !(Optional (Bind Ident VarInfoPtr)) !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, !*PatternState, !*ExpressionInfo, !*CheckState); checkPatternConstructor _ _ {ste_kind = STE_Empty} ident _ ps e_info cs=:{cs_error} = (AP_Empty ident, ps, e_info, { cs & cs_error = checkError ident " not defined" cs_error }) checkPatternConstructor mod_index is_expr_list {ste_kind = STE_FunctionOrMacro _,ste_index} ident opt_var ps=:{ps_fun_defs} e_info cs=:{cs_error} # ({fun_symb,fun_arity,fun_kind,fun_priority},ps_fun_defs) = ps_fun_defs![ste_index] ps = { ps & ps_fun_defs = ps_fun_defs } | fun_kind == FK_Macro | is_expr_list # macro_symbol = { glob_object = MakeDefinedSymbol fun_symb ste_index fun_arity, glob_module = cIclModIndex } = (AP_Constant APK_Macro macro_symbol fun_priority, ps, e_info, cs) | fun_arity == 0 # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro mod_index ste_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) = (AP_Empty ident, ps, e_info, { cs & cs_error = checkError ident " not defined" cs_error }) = (AP_Empty ident, ps, e_info, { cs & cs_error = checkError fun_symb " not allowed in a pattern" cs_error }) checkPatternConstructor mod_index is_expr_list {ste_index, ste_kind} cons_symb opt_var ps e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error} # (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, ef_cons_defs, ef_modules, cs_error) = determine_pattern_symbol mod_index ste_index ste_kind cons_symb.id_name ef_cons_defs ef_modules cs_error e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules } cons_symbol = { glob_object = MakeDefinedSymbol cons_symb cons_index cons_arity, glob_module = cons_module } | is_expr_list = (AP_Constant (APK_Constructor cons_type_index) cons_symbol cons_priority, ps, e_info, { cs & cs_error = cs_error }) | cons_arity == 0 = (AP_Algebraic cons_symbol cons_type_index [] opt_var, ps, e_info, { cs & cs_error = cs_error }) = (AP_Algebraic cons_symbol cons_type_index [] opt_var, ps, e_info, { cs & cs_error = checkError cons_symb " constructor arguments are missing" cs_error }) where determine_pattern_symbol mod_index id_index STE_Constructor id_name cons_defs modules error #! cons_def = cons_defs.[id_index] # {cons_type={st_arity},cons_priority, cons_type_index} = cons_def = (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_defs, modules, error) determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) id_name cons_defs modules error #! {dcl_common,dcl_conversions} = modules.[import_mod_index] #! cons_def = dcl_common.com_cons_defs.[id_index] # {cons_type={st_arity},cons_priority, cons_type_index} = cons_def id_index = convertIndex id_index (toInt STE_Constructor) dcl_conversions = (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_defs, modules, error) determine_pattern_symbol mod_index id_index id_kind id_name cons_defs modules error = (id_index, NoIndex, 0, NoPrio, NoIndex, cons_defs, modules, checkError id_name " constructor expected" error) checkIdentPattern :: !Level !Index !Bool !Ident !(Optional (Bind Ident VarInfoPtr)) ![Ident] !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, ![Ident], !*PatternState, !*ExpressionInfo, !*CheckState) checkIdentPattern def_level mod_index is_expr_list id=:{id_name,id_info} opt_var var_env ps e_info cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table | isLowerCaseName id_name # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable def_level entry id new_info_ptr cs = (AP_Variable id new_info_ptr opt_var, [ id : var_env ], { ps & ps_var_heap = ps_var_heap}, e_info, cs) # (pattern, ps, e_info, cs) = checkPatternConstructor mod_index is_expr_list entry id opt_var ps e_info cs = (pattern, var_env, ps, e_info, cs) :: PatternState = { ps_var_heap :: !.VarHeap , ps_fun_defs :: !.{# FunDef} } buildPattern mod_index (APK_Constructor type_index) cons_symb args opt_var ps e_info cs = (AP_Algebraic cons_symb type_index args opt_var, ps, e_info, cs) buildPattern mod_index APK_Macro {glob_object} args opt_var ps e_info=:{ef_modules,ef_cons_defs} cs=:{cs_error} # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro mod_index glob_object.ds_index args opt_var ps ef_modules ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) checkPattern :: !Level !Index !ParsedExpr !(Optional (Bind Ident VarInfoPtr)) ![Ident] !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, ![Ident], !*PatternState, !*ExpressionInfo, !*CheckState) checkPattern def_level mod_index (PE_List [exp]) opt_var var_env ps e_info cs=:{cs_symbol_table} = case exp of PE_Ident ident -> checkIdentPattern def_level mod_index cIsNotInExpressionList ident opt_var var_env ps e_info cs _ -> checkPattern def_level mod_index exp opt_var var_env ps e_info cs checkPattern def_level mod_index (PE_List [exp1, exp2 : exps]) opt_var var_env ps e_info cs # (exp_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index exp1 var_env ps e_info cs = check_patterns def_level mod_index [exp_pat] exp2 exps opt_var var_env ps e_info cs where check_patterns def_level mod_index left middle [] opt_var var_env ps e_info cs # (mid_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index middle No var_env ps e_info cs (pat, ps, e_info, cs) = combine_patterns opt_var [mid_pat : left] [] 0 ps e_info cs = (pat, var_env, ps, e_info, cs) check_patterns def_level mod_index left middle [right:rest] opt_var var_env ps e_info cs # (mid_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index middle var_env ps e_info cs = case mid_pat of AP_Constant kind constant=:{glob_object={ds_arity,ds_ident}} prio | ds_arity == 0 # (pattern, ps, e_info, cs) = buildPattern mod_index kind constant [] No ps e_info cs -> check_patterns def_level mod_index [pattern: left] right rest opt_var var_env ps e_info cs | is_infix_constructor prio # (left_arg, ps, e_info, cs) = combine_patterns No left [] 0 ps e_info cs -> check_infix_pattern def_level mod_index [] left_arg kind constant prio right rest opt_var var_env ps e_info cs -> (AP_Empty ds_ident, var_env, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error }) _ -> check_patterns def_level mod_index [mid_pat : left] right rest opt_var var_env ps e_info cs check_pattern def_level mod_index (PE_Ident id) var_env ps e_info cs = checkIdentPattern def_level mod_index cIsInExpressionList id No var_env ps e_info cs check_pattern def_level mod_index expr var_env ps e_info cs = checkPattern def_level mod_index expr No var_env ps e_info cs check_infix_pattern def_level mod_index left_args left kind cons prio middle [] opt_var var_env ps e_info cs # (mid_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index middle No var_env ps e_info cs (pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,mid_pat] opt_var ps e_info cs (pattern, ps, e_info, cs) = build_final_pattern mod_index left_args pattern ps e_info cs = (pattern, var_env, ps, e_info, cs) check_infix_pattern def_level mod_index left_args left kind cons prio middle [right] opt_var var_env ps e_info cs # (mid_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index middle var_env ps e_info cs (right_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index middle No var_env ps e_info cs (right_arg, ps, e_info, cs) = combine_patterns No [right_pat, mid_pat] [] 0 ps e_info cs (pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,right_arg] opt_var ps e_info cs (pattern, ps, e_info, cs) = build_final_pattern mod_index left_args pattern ps e_info cs = (pattern, var_env, ps, e_info, cs) check_infix_pattern def_level mod_index left_args left kind1 cons1 prio1 middle [inf_cons, arg : rest] opt_var var_env ps e_info cs # (inf_cons_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index inf_cons var_env ps e_info cs = case inf_cons_pat of AP_Constant kind2 cons2=:{glob_object={ds_ident,ds_arity}} prio2 | ds_arity == 0 # (mid_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index middle var_env ps e_info cs (pattern2, ps, e_info, cs) = buildPattern mod_index kind2 cons2 [] No ps e_info cs (pattern1, ps, e_info, cs) = buildPattern mod_index kind1 cons1 [left,mid_pat] No ps e_info cs (pattern1, ps, e_info, cs) = build_final_pattern mod_index left_args pattern1 ps e_info cs -> check_patterns def_level mod_index [pattern2,pattern1] arg rest opt_var var_env ps e_info cs | is_infix_constructor prio2 | prio1 > prio2 # (mid_pat, var_env, ps, e_info, cs) = check_pattern def_level mod_index middle var_env ps e_info cs (pattern, ps, e_info, cs) = buildPattern mod_index kind1 cons1 [left,mid_pat] No ps e_info cs (left_args, pattern, ps, e_info, cs) = build_left_pattern mod_index left_args prio2 pattern ps e_info cs -> check_infix_pattern def_level mod_index left_args pattern kind2 cons2 prio2 arg rest opt_var var_env ps e_info cs # (mid_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index middle No var_env ps e_info cs -> check_infix_pattern def_level mod_index [(kind1, cons1, prio1, left) : left_args] mid_pat kind2 cons2 prio2 arg rest No var_env ps e_info cs -> (AP_Empty ds_ident, var_env, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error }) _ # (right_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index middle No var_env ps e_info cs (pattern, ps, e_info, cs) = buildPattern mod_index kind1 cons1 [left,right_pat] No ps e_info cs (pattern, ps, e_info, cs) = build_final_pattern mod_index left_args pattern ps e_info cs -> check_patterns def_level mod_index [inf_cons_pat, pattern] arg rest opt_var var_env ps e_info cs is_infix_constructor (Prio _ _) = True is_infix_constructor _ = False build_left_pattern mod_index [] _ result_pattern ps e_info cs = ([], result_pattern, ps, e_info, cs) build_left_pattern mod_index la=:[(kind, cons, priol, left) : left_args] prior result_pattern ps e_info cs | priol > prior # (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs = build_left_pattern mod_index left_args prior result_pattern ps e_info cs = (la, result_pattern, ps, e_info, cs) build_final_pattern mod_index [] result_pattern ps e_info cs = (result_pattern, ps, e_info, cs) build_final_pattern mod_index [(kind, cons, priol, left) : left_appls] result_pattern ps e_info cs # (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs = build_final_pattern mod_index left_appls result_pattern ps e_info cs combine_patterns opt_var [first_expr] args nr_of_args ps e_info cs = case first_expr of AP_Constant kind constant=:{glob_object={ds_ident,ds_arity}} _ | ds_arity == nr_of_args # (pattern, ps, e_info, cs) = buildPattern mod_index kind constant args opt_var ps e_info cs -> (pattern, ps, e_info, cs) -> (AP_Empty ds_ident, ps, e_info, { cs & cs_error = checkError ds_ident "used with wrong arity" cs.cs_error}) _ | nr_of_args == 0 -> (first_expr, ps, e_info, cs) -> (first_expr, ps, e_info, { cs & cs_error = checkError "" "(curried) application not allowed " cs.cs_error }) combine_patterns opt_var [rev_arg : rev_args] args arity ps e_info cs = combine_patterns opt_var rev_args [rev_arg : args] (inc arity) ps e_info cs /* combine_optional_variables (Yes var1) (Yes var2) error = (Yes var1, checkError var2.bind_dst "pattern already bound" error) combine_optional_variables No opt_var error = (opt_var, error) combine_optional_variables opt_var _ error = (opt_var, error) */ checkPattern def_level mod_index (PE_DynamicPattern pattern type) opt_var var_env ps e_info cs # (dyn_pat, var_env, ps, e_info, cs) = checkPattern def_level mod_index pattern No var_env ps e_info cs = (AP_Dynamic dyn_pat type opt_var, var_env, ps, e_info, cs) checkPattern def_level mod_index (PE_Basic basic_value) opt_var var_env ps e_info cs = (AP_Basic basic_value opt_var, var_env, ps, e_info, cs) checkPattern def_level mod_index (PE_Tuple tuple_args) opt_var var_env ps e_info cs # (patterns, arity, var_env, ps, e_info, cs) = check_tuple_patterns def_level mod_index tuple_args var_env ps e_info cs (tuple_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs #! {cons_type_index} = e_info.ef_modules.[tuple_symbol.glob_module].dcl_common.com_cons_defs.[tuple_symbol.glob_object.ds_index] = (AP_Algebraic tuple_symbol cons_type_index patterns opt_var, var_env, ps, e_info, cs) where check_tuple_patterns def_level mod_index [] var_env ps e_info cs = ([], 0, var_env, ps, e_info, cs) check_tuple_patterns def_level mod_index [expr : exprs] var_env ps e_info cs # (pattern, var_env, ps, e_info, cs) = checkPattern def_level mod_index expr No var_env ps e_info cs (patterns, length, var_env, ps, e_info, cs) = check_tuple_patterns def_level mod_index exprs var_env ps e_info cs = ([pattern : patterns], inc length, var_env, ps, e_info, cs) checkPattern def_level mod_index (PE_Record record opt_type fields) opt_var var_env ps e_info cs # (opt_record_and_fields, e_info, cs) = checkFields mod_index fields opt_type e_info cs = case opt_record_and_fields of Yes (record_symbol, type_index, new_fields) # (patterns, (var_env, ps, e_info, cs)) = mapSt (check_field_pattern def_level mod_index) new_fields (var_env, ps, e_info, cs) (patterns, ps_var_heap) = bind_opt_record_variable opt_var patterns new_fields ps.ps_var_heap -> (AP_Algebraic record_symbol type_index patterns opt_var, var_env, { ps & ps_var_heap = ps_var_heap }, e_info, cs) No -> (AP_Empty (hd fields).bind_dst, var_env, ps, e_info, cs) where check_field_pattern def_level mod_index {bind_src = PE_Empty, bind_dst = {glob_object={fs_var}}} (var_env, ps, e_info, cs) #! entry = sreadPtr fs_var.id_info cs.cs_symbol_table # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable def_level entry fs_var new_info_ptr cs = (AP_Variable fs_var new_info_ptr No, ([ fs_var : var_env ], { ps & ps_var_heap = ps_var_heap }, e_info, cs)) check_field_pattern def_level mod_index {bind_src = PE_WildCard, bind_dst={glob_object={fs_var}}} (var_env, ps, e_info, cs) # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap = (AP_WildCard (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), (var_env, { ps & ps_var_heap = ps_var_heap }, e_info, cs)) check_field_pattern def_level mod_index {bind_src,bind_dst} (var_env, ps, e_info, cs) # (pattern, var_env, ps, e_info, cs) = checkPattern def_level mod_index bind_src No var_env ps e_info cs = (pattern, (var_env, ps, e_info, cs)) add_bound_variable (AP_Algebraic symbol index patterns No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Algebraic symbol index patterns (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable (AP_Basic bas_val No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Basic bas_val (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable (AP_Dynamic dynamic dynamic_type No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Dynamic dynamic dynamic_type (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable pattern _ ps_var_heap = (pattern, ps_var_heap) add_bound_variables [] _ var_heap = ([] , var_heap) add_bound_variables [ap : aps] [field : fields] var_heap # (ap, var_heap) = add_bound_variable ap field var_heap (aps, var_heap) = add_bound_variables aps fields var_heap = ([ap : aps], var_heap) bind_opt_record_variable (Yes {bind_dst}) patterns fields var_heap # (patterns, var_heap) = add_bound_variables patterns fields var_heap = (patterns, var_heap <:= (bind_dst, VI_Record patterns)) bind_opt_record_variable No patterns _ var_heap = (patterns, var_heap) checkPattern def_level mod_index (PE_Bound bind) opt_var var_env ps e_info cs = checkBoundPattern def_level mod_index bind opt_var var_env ps e_info cs checkPattern def_level mod_index (PE_Ident id) opt_var var_env ps e_info cs = checkIdentPattern def_level mod_index cIsNotInExpressionList id opt_var var_env ps e_info cs checkPattern def_level mod_index PE_WildCard opt_var var_env ps e_info cs = (AP_WildCard No, var_env, ps, e_info, cs) checkPattern def_level mod_index expr opt_var var_env ps e_info cs = abort "checkPattern: do not know how to handle pattern" ---> expr checkBoundPattern def_level mod_index {bind_src,bind_dst} opt_var var_env ps e_info cs=:{cs_symbol_table} | isLowerCaseName bind_dst.id_name #! entry = sreadPtr bind_dst.id_info cs_symbol_table # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable def_level entry bind_dst new_info_ptr cs ps = { ps & ps_var_heap = ps_var_heap } var_env = [ bind_dst : var_env ] = case opt_var of Yes bind -> checkPattern def_level mod_index bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) var_env ps e_info { cs & cs_error = checkError bind.bind_src "pattern already bound" cs.cs_error } No -> checkPattern def_level mod_index bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) var_env ps e_info cs = checkPattern def_level mod_index bind_src opt_var var_env ps e_info { cs & cs_error = checkError bind_dst "variable expected" cs.cs_error } instance <<< AuxiliaryPattern where (<<<) file (AP_Algebraic symbol index patterns var) = file <<< symbol <<< ' ' <<< patterns (<<<) file (AP_Variable ident var_ptr var) = file <<< ident (<<<) file (AP_Basic val var) = file <<< val (<<<) file (AP_Constant kind symbol prio) = file <<< symbol (<<<) file (AP_WildCard _) = file <<< '_' (<<<) file (AP_Empty ident) = file <<< "" newFreeVariable :: !FreeVar ![FreeVar] ->(!Bool, ![FreeVar]) newFreeVariable new_var vars=:[free_var=:{fv_def_level,fv_info_ptr}: free_vars] | new_var.fv_def_level > fv_def_level = (True, [new_var : vars]) | new_var.fv_def_level == fv_def_level | new_var.fv_info_ptr == fv_info_ptr = (False, vars) #! (free_var_added, free_vars) = newFreeVariable new_var free_vars = (free_var_added, [free_var : free_vars]) #! (free_var_added, free_vars) = newFreeVariable new_var free_vars = (free_var_added, [free_var : free_vars]) newFreeVariable new_var [] = (True, [new_var]) buildTypeCase type_case_dynamic type_case_patterns type_case_default type_case_info_ptr :== Case { case_expr = type_case_dynamic, case_guards = DynamicPatterns type_case_patterns, case_default = type_case_default, case_info_ptr = type_case_info_ptr, case_ident = No } consOptional (Yes thing) things = [ thing : things] consOptional No things = things buildApplication :: !SymbIdent !Int !Int !Bool ![Expression] !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin) buildApplication symbol form_arity act_arity is_fun args e_state=:{es_expression_heap} error | is_fun # (new_info_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap | form_arity < act_arity # app = { app_symb = { symbol & symb_arity = form_arity }, app_args = take form_arity args, app_info_ptr = new_info_ptr } = (App app @ drop form_arity args, { e_state & es_expression_heap = es_expression_heap }, error) # app = { app_symb = { symbol & symb_arity = act_arity }, app_args = take form_arity args, app_info_ptr = new_info_ptr } = (App app, { e_state & es_expression_heap = es_expression_heap }, error) # app = App { app_symb = { symbol & symb_arity = act_arity }, app_args = args, app_info_ptr = nilPtr } | form_arity < act_arity = (app, e_state, checkError symbol.symb_name " used with too many arguments" error) = (app, e_state, error) checkIdentExpression :: !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!Expression, ![FreeVar], !*ExpressionState, !u:ExpressionInfo, !*CheckState) checkIdentExpression is_expr_list free_vars id=:{id_info} e_input e_state e_info cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table = check_id_expression entry is_expr_list free_vars id e_input e_state e_info cs where check_id_expression :: !SymbolTableEntry !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!Expression, ![FreeVar], !*ExpressionState, !u:ExpressionInfo, !*CheckState) check_id_expression {ste_kind = STE_Empty} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error} = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id " undefined" cs_error }) check_id_expression {ste_kind = STE_Variable info_ptr,ste_def_level} is_expr_list free_vars id e_input=:{ei_fun_level} e_state=:{es_expression_heap} e_info cs | ste_def_level < ei_fun_level # free_var = { fv_def_level = ste_def_level, fv_name = id, fv_info_ptr = info_ptr, fv_count = 0 } (free_var_added, free_vars) = newFreeVariable free_var free_vars = (FreeVar free_var, free_vars, e_state, e_info, cs) #! (var_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap = (Var {var_name = id, var_info_ptr = info_ptr, var_expr_ptr = var_expr_ptr}, free_vars, {e_state & es_expression_heap = es_expression_heap}, e_info, cs) check_id_expression entry is_expr_list free_vars id=:{id_info} e_input e_state e_info cs # (symb_kind, arity, priority, is_a_function, e_state, e_info, cs) = determine_info_of_symbol entry id_info e_input e_state e_info cs symbol = { symb_name = id, symb_kind = symb_kind, symb_arity = 0 } | is_expr_list = (Constant symbol arity priority is_a_function, free_vars, e_state, e_info, cs) # (app_expr, e_state, cs_error) = buildApplication symbol arity 0 is_a_function [] e_state cs.cs_error = (app_expr, free_vars, e_state, e_info, { cs & cs_error = cs_error }) determine_info_of_symbol :: !SymbolTableEntry !SymbolPtr !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!SymbKind, !Int, !Priority, !Bool, !*ExpressionState, !u:ExpressionInfo,!*CheckState) determine_info_of_symbol entry=:{ste_kind=STE_FunctionOrMacro calls,ste_index,ste_def_level} symb_info e_input=:{ei_fun_index, ei_mod_index} e_state=:{es_fun_defs,es_calls} e_info cs=:{cs_symbol_table} #! {fun_symb,fun_arity,fun_kind,fun_priority} = es_fun_defs.[ste_index] # index = { glob_object = ste_index, glob_module = cIclModIndex } | is_called_before ei_fun_index calls | fun_kind == FK_Macro = (SK_Macro index, fun_arity, fun_priority, cIsNotAFunction, e_state, e_info, cs) = (SK_Function index, fun_arity, fun_priority, cIsAFunction, e_state, e_info, cs) # cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_FunctionOrMacro [ ei_fun_index : calls ]})} e_state = { e_state & es_calls = [{ fc_index = ste_index, fc_level = ste_def_level} : es_calls ]} = (if (fun_kind == FK_Macro) (SK_Macro index) (SK_Function index), fun_arity, fun_priority, cIsAFunction, e_state, e_info, cs) where is_called_before caller_index [] = False is_called_before caller_index [called_index : calls] = caller_index == called_index || is_called_before caller_index calls determine_info_of_symbol entry=:{ste_kind=STE_Imported kind mod_index,ste_index} symb_index e_input e_state e_info=:{ef_modules} cs #! mod_def = ef_modules.[mod_index] # (kind, arity, priotity, is_fun) = ste_kind_to_symbol_kind kind ste_index mod_index mod_def = (kind, arity, priotity, is_fun, e_state, e_info, cs) where ste_kind_to_symbol_kind :: !STE_Kind !Index !Index !DclModule -> (!SymbKind, !Int, !Priority, !Bool); ste_kind_to_symbol_kind STE_DclFunction def_index mod_index {dcl_functions,dcl_conversions} #! {ft_type={st_arity},ft_priority} = dcl_functions.[def_index] # def_index = convertIndex def_index (toInt STE_DclFunction) dcl_conversions = (SK_Function { glob_object = def_index, glob_module = mod_index }, st_arity, ft_priority, cIsAFunction) ste_kind_to_symbol_kind STE_Member def_index mod_index {dcl_common={com_member_defs},dcl_conversions} #! {me_type={st_arity},me_priority} = com_member_defs.[def_index] # def_index = convertIndex def_index (toInt STE_Member) dcl_conversions = (SK_OverloadedFunction { glob_object = def_index, glob_module = mod_index }, st_arity, me_priority, cIsAFunction) ste_kind_to_symbol_kind STE_Constructor def_index mod_index {dcl_common={com_cons_defs},dcl_conversions} #! {cons_type={st_arity},cons_priority} = com_cons_defs.[def_index] # def_index = convertIndex def_index (toInt STE_Constructor) dcl_conversions = (SK_Constructor { glob_object = def_index, glob_module = mod_index }, st_arity, cons_priority, cIsNotAFunction) determine_info_of_symbol {ste_kind=STE_Member, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_member_defs} cs #! {me_type={st_arity},me_priority} = ef_member_defs.[ste_index] = (SK_OverloadedFunction { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, me_priority, cIsAFunction, e_state, e_info, cs) determine_info_of_symbol {ste_kind=STE_Constructor, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_cons_defs} cs #! {cons_type={st_arity},cons_priority} = ef_cons_defs.[ste_index] = (SK_Constructor { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, cIsNotAFunction, e_state, e_info, cs) determine_info_of_symbol {ste_kind=STE_DclFunction, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_modules} cs #! mod_def = ef_modules.[ei_mod_index] # {ft_type={st_arity},ft_priority} = mod_def.dcl_functions.[ste_index] def_index = convertIndex ste_index (toInt STE_DclFunction) mod_def.dcl_conversions = (SK_Function { glob_object = def_index, glob_module = ei_mod_index}, st_arity, ft_priority, cIsAFunction, e_state, e_info, cs) :: RecordKind = RK_Constructor | RK_Update | RK_UpdateToConstructor ![AuxiliaryPattern] checkExpression :: ![FreeVar] !ParsedExpr !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> *(!Expression, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState); checkExpression free_vars (PE_List exprs) e_input e_state e_info cs # (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs (expr, e_state, cs_error) = build_expression exprs e_state cs.cs_error = (expr, free_vars, e_state, e_info, { cs & cs_error = cs_error }) where check_expressions free_vars [expr : exprs] e_input e_state e_info cs # (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs = case expr of PE_Ident id # (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsInExpressionList free_vars id e_input e_state e_info cs -> ([expr : exprs], free_vars, e_state, e_info, cs) _ # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs -> ([expr : exprs], free_vars, e_state, e_info, cs) check_expressions free_vars [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) build_expression [Constant symb arity _ is_fun] e_state cs_error = buildApplication symb arity 0 is_fun [] e_state cs_error build_expression [expr] e_state cs_error = (expr, e_state, cs_error) build_expression [expr : exprs] e_state cs_error # (opt_opr, left, e_state, cs_error) = split_at_operator [expr] exprs e_state cs_error (left_expr, e_state, cs_error) = combine_expressions left [] 0 e_state cs_error = case opt_opr of Yes (symb, prio, is_fun, right) -> build_operator_expression [] left_expr (symb, prio, is_fun) right e_state cs_error No -> (left_expr, e_state, cs_error) where split_at_operator left [Constant symb arity NoPrio is_fun : exprs] e_state cs_error # (appl_exp, e_state, cs_error) = buildApplication symb arity 0 is_fun [] e_state cs_error = split_at_operator [appl_exp : left] exprs e_state cs_error split_at_operator left [Constant symb arity prio is_fun] e_state cs_error # (appl_exp, e_state, cs_error) = buildApplication symb arity 0 is_fun [] e_state cs_error = (No, [appl_exp : left], e_state, cs_error) split_at_operator left [expr=:(Constant symb _ prio is_fun) : exprs] e_state cs_error = (Yes (symb, prio, is_fun, exprs), left, e_state, cs_error) split_at_operator left [expr : exprs] e_state cs_error = split_at_operator [expr : left] exprs e_state cs_error split_at_operator exp [] e_state cs_error = (No, exp, e_state, cs_error) combine_expressions [first_expr] args arity e_state cs_error = case first_expr of Constant symb form_arity _ is_fun # (app_exp, e_state, cs_error) = buildApplication symb form_arity arity is_fun args e_state cs_error -> (app_exp, e_state, cs_error) _ | arity == 0 -> (first_expr, e_state, cs_error) -> (first_expr @ args, e_state, cs_error) combine_expressions [rev_arg : rev_args] args arity e_state cs_error = combine_expressions rev_args [rev_arg : args] (inc arity) e_state cs_error build_operator_expression left_appls left1 (symb1, prio1, is_fun1) [re : res] e_state cs_error # (opt_opr, left2, e_state, cs_error) = split_at_operator [re] res e_state cs_error = case opt_opr of Yes (symb2, prio2, is_fun2, right) | prio1 > prio2 # (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error (new_left, e_state, cs_error) = buildApplication symb1 2 2 is_fun1 [left1,middle_exp] e_state cs_error (left_appls, new_left, e_state, cs_error) = build_left_operand left_appls prio2 new_left e_state cs_error -> build_operator_expression left_appls new_left (symb2, prio2, is_fun2) right e_state cs_error # (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error -> build_operator_expression [(symb1, prio1, is_fun1, left1) : left_appls] middle_exp (symb2, prio2, is_fun2) right e_state cs_error No # (right, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error (result_expr, e_state, cs_error) = buildApplication symb1 2 2 is_fun1 [left1,right] e_state cs_error -> build_final_expression left_appls result_expr e_state cs_error build_left_operand [] _ result_expr e_state cs_error = ([], result_expr, e_state, cs_error) build_left_operand la=:[(symb, priol, is_fun, left) : left_appls] prior result_expr e_state cs_error | priol > prior # (result_expr, e_state, cs_error) = buildApplication symb 2 2 is_fun [left,result_expr] e_state cs_error = build_left_operand left_appls prior result_expr e_state cs_error = (la, result_expr, e_state, cs_error) build_final_expression [] result_expr e_state cs_error = (result_expr, e_state, cs_error) build_final_expression [(symb, _, is_fun, left) : left_appls] result_expr e_state cs_error # (result_expr, e_state, cs_error) = buildApplication symb 2 2 is_fun [left,result_expr] e_state cs_error = build_final_expression left_appls result_expr e_state cs_error checkExpression free_vars (PE_Let strict let_locals expr) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # ei_expr_level = inc ei_expr_level (loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index let_locals e_state e_info cs e_input = { e_input & ei_expr_level = ei_expr_level } (let_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (let_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs let_expr e_input e_state e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index ei_expr_level let_locals e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs (es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level var_env let_locals es_fun_defs cs.cs_symbol_table = (let_expr, free_vars, { e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expression_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps }, e_info, { cs & cs_symbol_table = cs_symbol_table }) checkExpression free_vars (PE_Case case_ident expr alts) e_input e_state e_info cs # (pattern_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (guards, pattern_variables, defaul, free_vars, e_state, e_info, cs) = check_guarded_expressions free_vars alts [] e_input e_state e_info cs (pattern_expr, binds, es_expression_heap) = bind_pattern_variables pattern_variables pattern_expr e_state.es_expression_heap (case_expr, es_expression_heap) = build_case guards defaul pattern_expr case_ident es_expression_heap (result_expr, es_expression_heap) = buildLetExpression binds cIsNotStrict case_expr es_expression_heap = (result_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs) where check_guarded_expressions free_vars [g] pattern_variables e_input=:{ei_expr_level} e_state e_info cs # e_input = { e_input & ei_expr_level = inc ei_expr_level } = check_guarded_expression free_vars g NoPattern pattern_variables No e_input e_state e_info cs check_guarded_expressions free_vars [g : gs] pattern_variables e_input=:{ei_expr_level} e_state e_info cs # e_input = { e_input & ei_expr_level = inc ei_expr_level } (gs, pattern_variables, defaul, free_vars, e_state, e_info, cs) = check_guarded_expressions free_vars gs pattern_variables e_input e_state e_info cs = check_guarded_expression free_vars g gs pattern_variables defaul e_input e_state e_info cs check_guarded_expression free_vars {calt_pattern,calt_rhs={rhs_alts,rhs_locals}} patterns pattern_variables defaul e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_fun_defs,es_var_heap} e_info cs # (pattern, var_env, {ps_fun_defs,ps_var_heap}, e_info, cs) = checkPattern ei_expr_level ei_mod_index calt_pattern No [] {ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs} (expr, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table (guarded_expr, pattern_variables, defaul, es_var_heap, es_expression_heap, dynamics_in_patterns, cs) = transform_pattern pattern patterns pattern_variables defaul expr es_var_heap es_expression_heap es_dynamics { cs & cs_symbol_table = cs_symbol_table } = (guarded_expr, pattern_variables, defaul, free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap, es_dynamics = dynamics_in_patterns }, e_info, cs) transform_pattern :: !AuxiliaryPattern !CasePatterns !(Env Ident VarInfoPtr) !(Optional (Optional FreeVar, Expression)) !Expression !*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState -> (!CasePatterns, !Env Ident VarInfoPtr, !Optional (Optional FreeVar,Expression), !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState) transform_pattern (AP_Algebraic cons_symbol type_index args opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs # (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs type_symbol = { glob_module = cons_symbol.glob_module, glob_object = type_index} pattern = { ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr} pattern_variables = cons_optional opt_var pattern_variables = case patterns of AlgebraicPatterns alg_type alg_patterns | type_symbol == alg_type -> (AlgebraicPatterns type_symbol [pattern : alg_patterns], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error }) NoPattern -> (AlgebraicPatterns type_symbol [pattern], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error }) transform_pattern (AP_Basic basic_val opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs # pattern = { bp_value = basic_val, bp_expr = result_expr} pattern_variables = cons_optional opt_var pattern_variables (type_symbol, cs) = typeOfBasicValue basic_val cs = case patterns of BasicPatterns basic_type basic_patterns | type_symbol == basic_type -> (BasicPatterns basic_type [pattern : basic_patterns], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError basic_val "incompatible types of patterns" cs.cs_error }) NoPattern -> (BasicPatterns type_symbol [pattern], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError basic_val "illegal combination of patterns" cs.cs_error}) transform_pattern (AP_Dynamic pattern type opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs # (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap pattern = { dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty } pattern_variables = cons_optional opt_var pattern_variables = case patterns of DynamicPatterns dyn_patterns -> (DynamicPatterns [pattern : dyn_patterns], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs) NoPattern -> (DynamicPatterns [pattern], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs) _ -> (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError """illegal combination of patterns" cs.cs_error }) transform_pattern (AP_Variable name var_info opt_var) NoPattern pattern_variables No result_expr var_store expr_heap opt_dynamics cs = (NoPattern, cons_optional opt_var pattern_variables, Yes (Yes { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr), var_store, expr_heap, opt_dynamics, cs) transform_pattern (AP_Variable name var_info opt_var) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs = (patterns, cons_optional opt_var pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError name "illegal combination of patterns" cs.cs_error }) transform_pattern (AP_WildCard _) NoPattern pattern_variables No result_expr var_store expr_heap opt_dynamics cs = (NoPattern, pattern_variables, Yes (No, result_expr), var_store, expr_heap, opt_dynamics, cs) transform_pattern (AP_WildCard _) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs = (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError "_" "illegal combination of patterns" cs.cs_error }) transform_pattern (AP_Empty name) patterns pattern_variables defaul result_expr var_store expr_heap opt_dynamics cs = (patterns, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) build_case NoPattern defaul expr case_ident expr_heap = case defaul of Yes (opt_var, result) -> case opt_var of Yes var # (let_expression, expr_heap) = bind_default_variable expr var result expr_heap -> (let_expression, expr_heap) No -> (result, expr_heap) No -> (abort "incorrect case expression in build_case", expr_heap) build_case (DynamicPatterns patterns) defaul expr case_ident expr_heap = case defaul of Yes (opt_var, result) -> case opt_var of Yes var # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = var.fv_name, var_info_ptr = var.fv_info_ptr, var_expr_ptr = var_expr_ptr } result = buildTypeCase (Var bound_var) patterns (Yes result) type_case_info_ptr (case_expression, expr_heap) = bind_default_variable expr var result expr_heap -> (case_expression, expr_heap) No # (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (buildTypeCase expr patterns (Yes result) type_case_info_ptr, expr_heap) No # (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (buildTypeCase expr patterns No type_case_info_ptr, expr_heap) build_case patterns (Yes (defaul,result)) expr case_ident expr_heap = case defaul of Yes var # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = var.fv_name, var_info_ptr = var.fv_info_ptr, var_expr_ptr = var_expr_ptr } result = Case {case_expr = Var bound_var, case_guards = patterns, case_default = Yes result, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr} (case_expression, expr_heap) = bind_default_variable expr var result expr_heap -> (case_expression, expr_heap) No # (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Case {case_expr = expr, case_guards = patterns, case_default = Yes result, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr }, expr_heap) build_case patterns No expr case_ident expr_heap # (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Case {case_expr = expr, case_guards = patterns, case_default = No, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr }, expr_heap) bind_default_variable bind_src bind_dst result_expr expr_heap # (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Let {let_strict = cIsNotStrict, let_binds = [{ bind_src = bind_src, bind_dst = bind_dst }], let_expr = result_expr, let_info_ptr = let_expr_ptr }, expr_heap) cons_optional (Yes var) variables = [ var : variables ] cons_optional No variables = variables bind_pattern_variables [] pattern_expr expr_heap = (pattern_expr, [], expr_heap) bind_pattern_variables [{bind_src,bind_dst} : variables] this_pattern_expr expr_heap # free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } (pattern_expr, binds, expr_heap) = bind_pattern_variables variables (Var bound_var) expr_heap = (pattern_expr, [{bind_src = this_pattern_expr, bind_dst = free_var} : binds], expr_heap) checkExpression free_vars (PE_Selection is_unique expr selectors) e_input e_state e_info cs # (selectors, free_vars, e_state, e_info, cs) = checkSelectors free_vars selectors e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs | is_unique # (tuple_type, cs) = getPredefinedGlobalSymbol (GetTupleTypeIndex 2) PD_PredefinedModule STE_Type 2 cs = (Selection (Yes tuple_type) expr selectors, free_vars, e_state, e_info, cs) = (Selection No expr selectors, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Update expr1 selectors expr2) e_input e_state e_info cs # (expr1, free_vars, e_state, e_info, cs) = checkExpression free_vars expr1 e_input e_state e_info cs (selectors, free_vars, e_state, e_info, cs) = checkSelectors free_vars selectors e_input e_state e_info cs (expr2, free_vars, e_state, e_info, cs) = checkExpression free_vars expr2 e_input e_state e_info cs = (Update expr1 selectors expr2, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Tuple exprs) e_input e_state e_info cs # (exprs, arity, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs ({glob_object={ds_ident,ds_index, ds_arity},glob_module}, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs = (App { app_symb = { symb_name = ds_ident, symb_arity = ds_arity, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }}, app_args = exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs) where check_expression_list free_vars [] e_input e_state e_info cs = ([], 0, free_vars, e_state, e_info, cs) check_expression_list free_vars [expr : exprs] e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (exprs, length, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs = ([expr : exprs], inc length, free_vars, e_state, e_info, cs) checkExpression free_vars rec=:(PE_Record record opt_type fields) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (opt_record_and_fields, e_info, cs) = checkFields ei_mod_index fields opt_type e_info cs = case opt_record_and_fields of Yes (cons=:{glob_module, glob_object}, _, new_fields) # {ds_ident,ds_index,ds_arity} = glob_object rec_cons = { symb_name = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }, symb_arity = ds_arity } -> case record of PE_Empty # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Constructor e_input e_state e_info cs -> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs) _ # (rec_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars record e_input e_state e_info cs -> case rec_expr of Var {var_info_ptr,var_name} # (var_info, es_var_heap) = readPtr var_info_ptr e_state.es_var_heap e_state = { e_state & es_var_heap = es_var_heap } -> case var_info of VI_Record fields # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 (RK_UpdateToConstructor fields) e_input e_state e_info cs -> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs) _ # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs -> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs) _ # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs -> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs) No -> (EE, free_vars, e_state, e_info, cs) where remove_fields binds = [ bind_src \\ {bind_src} <- binds ] check_field_exprs free_vars [] field_nr record_kind e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) check_field_exprs free_vars [field_expr : field_exprs] field_nr record_kind e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = check_field_expr free_vars field_expr field_nr record_kind e_input e_state e_info cs (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars field_exprs (inc field_nr) record_kind e_input e_state e_info cs = ([expr : exprs], free_vars, e_state, e_info, cs) check_field_expr free_vars field=:{bind_src = PE_Empty, bind_dst={glob_object={fs_var,fs_name,fs_index},glob_module}} field_nr record_kind e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars fs_var e_input e_state e_info cs = ({ field & bind_src = expr }, free_vars, e_state, e_info, cs) check_field_expr free_vars field=:{bind_src = PE_WildCard, bind_dst={glob_object=fs_name}} field_nr RK_Constructor e_input e_state e_info cs = ({ field & bind_src = EE }, free_vars, e_state, e_info, { cs & cs_error = checkError fs_name "field not specified" cs.cs_error }) check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr RK_Update e_input e_state e_info cs = ({ field & bind_src = EE }, free_vars, e_state, e_info, cs) check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr (RK_UpdateToConstructor fields) e_input e_state=:{es_expression_heap} e_info cs # (var_name, var_info_ptr) = get_field_var (fields !! field_nr) (var_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap = ({ field & bind_src = Var { var_name = var_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr }}, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs) check_field_expr free_vars field=:{bind_src} field_nr upd_record e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs = ({ field & bind_src = expr }, free_vars, e_state, e_info, cs) get_field_var (AP_Algebraic _ _ _ (Yes {bind_src,bind_dst})) = (bind_src, bind_dst) get_field_var (AP_Basic _ (Yes {bind_src,bind_dst})) = (bind_src, bind_dst) get_field_var (AP_Dynamic _ _ (Yes {bind_src,bind_dst})) = (bind_src, bind_dst) get_field_var (AP_Variable id var_ptr _) = (id, var_ptr) get_field_var (AP_WildCard (Yes {bind_src,bind_dst})) = (bind_src, bind_dst) get_field_var _ = ({ id_name = "** ERRONEOUS **", id_info = nilPtr }, nilPtr) checkExpression free_vars (PE_Dynamic expr opt_type) e_input e_state=:{es_expression_heap,es_dynamics} e_info cs # (dyn_info_ptr, es_expression_heap) = newPtr (EI_Dynamic opt_type) es_expression_heap (dyn_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input {e_state & es_dynamics = [dyn_info_ptr : es_dynamics], es_expression_heap = es_expression_heap } e_info cs = (DynamicExpr { dyn_expr = dyn_expr, dyn_opt_type = opt_type, dyn_info_ptr = dyn_info_ptr, dyn_type_code = TCE_Empty, dyn_uni_vars = [] }, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Basic basic_value) e_input e_state e_info cs # (basic_type, cs) = typeOfBasicValue basic_value cs = (BasicExpr basic_value basic_type, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_ABC_Code code_sequence do_inline) e_input e_state e_info cs = (ABCCodeExpr code_sequence do_inline, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Any_Code ins outs code_sequence) e_input e_state e_info cs # (ins, (free_vars, e_state, e_info, cs)) = check_in_parameters e_input ins (free_vars, e_state, e_info, cs) (new_outs, (e_state, cs)) = check_out_parameters e_input.ei_expr_level outs (e_state, cs) cs_symbol_table = remove_out_parameters_from_symbol_table e_input.ei_expr_level outs cs.cs_symbol_table = (AnyCodeExpr ins new_outs code_sequence, free_vars, e_state, e_info, { cs & cs_symbol_table = cs_symbol_table }) where check_in_parameters e_input params fv_es_ei_cs = mapSt (check_in_parameter e_input) params fv_es_ei_cs check_in_parameter e_input { bind_src, bind_dst } (free_vars, e_state, e_info, cs) # (id_expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars bind_dst e_input e_state e_info cs = case id_expr of Var var -> ({ bind_dst = var, bind_src = bind_src }, (free_vars, e_state, e_info, cs)) _ -> ({ bind_dst = { var_name = bind_dst, var_info_ptr = nilPtr, var_expr_ptr = nilPtr }, bind_src = bind_src }, (free_vars, e_state, e_info, { cs & cs_error = checkError bind_src "bound variable expected" cs.cs_error })) check_out_parameters expr_level params es_cs = mapSt (check_out_parameter expr_level) params es_cs check_out_parameter expr_level bind=:{ bind_src, bind_dst } (e_state, cs) | isLowerCaseName bind_dst.id_name #! entry = sreadPtr bind_dst.id_info cs.cs_symbol_table # (new_info_ptr, es_var_heap) = newPtr VI_Empty e_state.es_var_heap cs = checkPatternVariable expr_level entry bind_dst new_info_ptr cs = ( { bind & bind_dst = { fv_def_level = expr_level, fv_name = bind_dst, fv_info_ptr = new_info_ptr, fv_count = 0 }}, ( { e_state & es_var_heap = es_var_heap }, cs)) = ( { bind & bind_dst = { fv_def_level = expr_level, fv_name = bind_dst, fv_info_ptr = nilPtr, fv_count = 0 }}, ( e_state, { cs & cs_error = checkError bind_src "variable expected" cs.cs_error })) remove_out_parameters_from_symbol_table expr_level idents symbol_table = foldSt (\{bind_dst} -> removeIdentFromSymbolTable expr_level bind_dst) idents symbol_table checkExpression free_vars (PE_Ident id) e_input e_state e_info cs = checkIdentExpression cIsNotInExpressionList free_vars id e_input e_state e_info cs checkExpression free_vars expr e_input e_state e_info cs = abort "checkExpression (check.icl, line 1433)" <<- expr checkSelectors free_vars [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) checkSelectors free_vars [ selector : selectors ] e_input e_state e_info cs # (selector, free_vars, e_state, e_info, cs) = check_selector free_vars selector e_input e_state e_info cs (selectors, free_vars, e_state, e_info, cs) = checkSelectors free_vars selectors e_input e_state e_info cs = ([ selector : selectors ], free_vars, e_state, e_info, cs) where check_selector free_vars (PS_Record selector=:{id_info,id_name} opt_type) e_input=:{ei_mod_index} e_state e_info=:{ef_selector_defs, ef_modules} cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # selectors = retrieveSelectorIndexes ei_mod_index entry (field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs) = get_field_nr ei_mod_index selector opt_type selectors ef_selector_defs ef_modules cs = (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state, {e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs) where get_field_nr :: !Index !Ident !(Optional Ident) ![Global Index] !u:{#SelectorDef} !v:{# DclModule} !*CheckState -> (!Index, !Index, !Index, u:{#SelectorDef}, v:{#DclModule}, !*CheckState) get_field_nr mod_index sel_id _ [] selector_defs modules cs=:{cs_error} = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name " selector not defined" cs_error }) get_field_nr mod_index sel_id (Yes type_id=:{id_info}) selectors selector_defs modules cs=:{cs_symbol_table,cs_error} #! entry = sreadPtr id_info cs_symbol_table # (type_index, type_module) = retrieveGlobalDefinition entry STE_Type mod_index | type_index <> NotFound #! (selector_index, selector_offset, selector_defs, modules) = determine_selector mod_index type_module type_index selectors selector_defs modules | selector_offset <> NoIndex = (type_module, selector_index, selector_offset, selector_defs, modules, cs) = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name " selector not defined" cs_error }) = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError type_id " type not defined" cs_error }) get_field_nr mod_index sel_id No [{glob_object,glob_module}] selector_defs modules cs | mod_index == glob_module #! selector_offset = selector_defs.[glob_object].sd_field_nr = (glob_module, glob_object, selector_offset, selector_defs, modules, cs) #! selector_offset = modules.[glob_module].dcl_common.com_selector_defs.[glob_object].sd_field_nr = (glob_module, glob_object, selector_offset, selector_defs, modules, cs) get_field_nr mod_index sel_id No _ selector_defs modules cs=:{cs_error} = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError sel_id " ambiguous selector specified" cs_error }) determine_selector :: !Index !Index !Index ![Global Index] !u:{# SelectorDef} !v:{# DclModule} -> (!Int, !Int, !u:{# SelectorDef}, !v:{# DclModule}) determine_selector mod_index type_mod_index type_index [] selector_defs modules = (NoIndex, NoIndex, selector_defs, modules) determine_selector mod_index type_mod_index type_index [{glob_module, glob_object} : selectors] selector_defs modules | type_mod_index == glob_module | type_mod_index == mod_index #! selector_def = selector_defs.[glob_object] | selector_def.sd_type_index == type_index = (glob_object, selector_def.sd_field_nr, selector_defs, modules) = determine_selector mod_index type_mod_index type_index selectors selector_defs modules #! {dcl_common={com_selector_defs}} = modules.[glob_module] #! selector_def = com_selector_defs.[glob_object] | selector_def.sd_type_index == type_index = (glob_object, selector_def.sd_field_nr, selector_defs, modules) = determine_selector mod_index type_mod_index type_index selectors selector_defs modules = determine_selector mod_index type_mod_index type_index selectors selector_defs modules check_selector free_vars (PS_Array index_expr) e_input=:{ei_mod_index} e_state e_info cs # (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars index_expr e_input e_state e_info cs (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs (new_info_ptr, es_expression_heap) = newPtr EI_Empty e_state.es_expression_heap = (ArraySelection glob_select_symb new_info_ptr index_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs) buildLetExpression :: !(Env Expression FreeVar) !Bool !Expression !*ExpressionHeap -> (!Expression, !*ExpressionHeap) buildLetExpression [] is_strict expr expr_heap = (expr, expr_heap) buildLetExpression binds is_strict expr expr_heap # (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Let {let_strict = is_strict, let_binds = binds, let_expr = expr, let_info_ptr = let_expr_ptr }, expr_heap) checkLhssOfLocalDefs def_level mod_index (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_nodes}) e_state=:{es_var_heap,es_fun_defs} e_info cs # (loc_defs, var_env, {ps_fun_defs,ps_var_heap}, e_info, cs) = check_patterns def_level mod_index loc_nodes [] {ps_fun_defs = es_fun_defs, ps_var_heap = es_var_heap} e_info cs (es_fun_defs, cs_symbol_table, cs_error) = addLocalFunctionDefsToSymbolTable def_level ir_from ir_to ps_fun_defs cs.cs_symbol_table cs.cs_error = (loc_defs, var_env, { e_state & es_fun_defs = es_fun_defs, es_var_heap = ps_var_heap }, e_info, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }) where check_patterns def_level mod_index [ (_,node_def) : node_defs ] var_env var_store e_info cs # (pattern, var_env, var_store, e_info, cs) = checkPattern def_level mod_index node_def.nd_dst No var_env var_store e_info cs (patterns, var_env, var_store, e_info, cs) = check_patterns def_level mod_index node_defs var_env var_store e_info cs = ([{ node_def & nd_dst = pattern } : patterns], var_env, var_store, e_info, cs) check_patterns def_level mod_index [] var_env var_store e_info cs = ([], var_env, var_store, e_info, cs) checkRhssAndTransformLocalDefs free_vars [] rhs_expr e_input e_state e_info cs = (rhs_expr, free_vars, e_state, e_info, cs) checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs # (binds, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars loc_defs e_input e_state e_info cs (rhs_expr, es_expression_heap) = buildLetExpression binds cIsNotStrict rhs_expr e_state.es_expression_heap = (rhs_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs) checkAndTransformPatternIntoBind free_vars [{nd_dst,nd_alts,nd_locals} : local_defs] e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (bind_src, free_vars, e_state, e_info, cs) = checkRhs free_vars nd_alts nd_locals e_input e_state e_info cs (binds_of_bind, es_var_heap, es_expression_heap, e_info, cs) = transfromPatternIntoBind ei_mod_index ei_expr_level nd_dst bind_src e_state.es_var_heap e_state.es_expression_heap e_info cs e_state = { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap } (binds_of_local_defs, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars local_defs e_input e_state e_info cs = (binds_of_bind ++ binds_of_local_defs, free_vars, e_state, e_info, cs) checkAndTransformPatternIntoBind free_vars [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) transfromPatternIntoBind :: !Index !Level !AuxiliaryPattern !Expression !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState -> *(![Bind Expression FreeVar], !*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState) transfromPatternIntoBind mod_index def_level (AP_Variable name var_info _) src_expr var_store expr_heap e_info cs # bind = {bind_src = src_expr, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }} = ([bind], var_store, expr_heap, e_info, cs) transfromPatternIntoBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} type_index args opt_var) src_expr var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs # (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr var_store expr_heap | ds_arity == 0 = ([], var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident " constant not allowed in a node pattern" cs.cs_error}) # (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs | is_tuple # (tuple_var, tuple_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind var_store expr_heap = transform_sub_patterns mod_index def_level args ds_cons 0 tuple_var tuple_bind var_store expr_heap e_info cs # ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index glob_module type_index ef_type_defs ef_modules e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules } = case td_rhs of RecordType {rt_fields} | size rt_fields == 1 -> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 src_expr opt_var_bind var_store expr_heap e_info cs # (record_var, record_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind var_store expr_heap -> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 record_var record_bind var_store expr_heap e_info cs _ | ds_arity == 1 # (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr No cons_symbol src_expr) var_store expr_heap e_info cs -> (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs) # (tuple_type, cs) = getPredefinedGlobalSymbol (GetTupleTypeIndex ds_arity) PD_PredefinedModule STE_Type ds_arity cs (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs (match_var, match_bind, var_store, expr_heap) = bind_match_expr (MatchExpr (Yes tuple_type) cons_symbol src_expr) opt_var_bind var_store expr_heap -> transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind var_store expr_heap e_info cs where get_type_def mod_index type_mod_index type_index ef_type_defs ef_modules | mod_index == type_mod_index # (type_def, ef_type_defs) = ef_type_defs![type_index] = (type_def, ef_type_defs, ef_modules) # ({dcl_common}, ef_modules) = ef_modules![type_mod_index] = (dcl_common.com_type_defs.[type_index], ef_type_defs, ef_modules) is_tuple_symbol cons_module cons_index cs # (tuple_2_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs = (tuple_2_symbol.glob_module == cons_module && tuple_2_symbol.glob_object.ds_index <= cons_index && cons_index <= tuple_2_symbol.glob_object.ds_index + 30, cs) transform_sub_patterns mod_index def_level [pattern : patterns] tup_id tup_index arg_var all_binds var_store expr_heap e_info cs # match_expr = TupleSelect tup_id tup_index arg_var (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level pattern match_expr var_store expr_heap e_info cs = transform_sub_patterns mod_index def_level patterns tup_id (inc tup_index) arg_var (binds ++ all_binds) var_store expr_heap e_info cs transform_sub_patterns mod_index _ [] _ _ _ binds var_store expr_heap e_info cs = (binds, var_store, expr_heap, e_info, cs) transform_sub_patterns_of_record mod_index def_level [pattern : patterns] fields field_module field_index record_expr all_binds var_store expr_heap e_info cs # {fs_name, fs_index} = fields.[field_index] selector = { glob_module = field_module, glob_object = MakeDefinedSymbol fs_name fs_index 1} (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level pattern (Selection No record_expr [ RecordSelection selector field_index ]) var_store expr_heap e_info cs = transform_sub_patterns_of_record mod_index def_level patterns fields field_module (inc field_index) record_expr (binds ++ all_binds) var_store expr_heap e_info cs transform_sub_patterns_of_record mod_index _ [] _ _ _ _ binds var_store expr_heap e_info cs = (binds, var_store, expr_heap, e_info, cs) bind_opt_var (Yes {bind_src,bind_dst}) src_expr var_heap expr_heap # free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } = (Var bound_var, [{bind_src = src_expr, bind_dst = free_var}], var_heap, expr_heap) bind_opt_var No src_expr var_heap expr_heap = (src_expr, [], var_heap, expr_heap) bind_match_expr var_expr=:(Var var) opt_var_bind var_heap expr_heap = (var_expr, opt_var_bind, var_heap, expr_heap) bind_match_expr match_expr opt_var_bind var_heap expr_heap # new_name = newVarId "_x" (var_info_ptr, var_heap) = newPtr VI_Empty var_heap (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } free_var = { fv_name = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 } = (Var bound_var, [{bind_src = match_expr, bind_dst = free_var} : opt_var_bind], var_heap, expr_heap) transfromPatternIntoBind mod_index def_level (AP_WildCard _) src_expr var_store expr_heap e_info cs = ([], var_store, expr_heap, e_info, cs) transfromPatternIntoBind _ _ pattern src_expr var_store expr_heap e_info cs = ([], var_store, expr_heap, e_info, { cs & cs_error = checkError "" " illegal node pattern" cs.cs_error}) checkLocalFunctions mod_index level (CollectedLocalDefs {loc_functions={ir_from,ir_to}}) fun_defs e_info heaps cs = checkFunctions mod_index level ir_from ir_to fun_defs e_info heaps cs checkRhs free_vars rhs_alts rhs_locals e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # ei_expr_level = inc ei_expr_level (loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index rhs_locals e_state e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index ei_expr_level rhs_locals e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs (rhs_expr, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars rhs_alts { e_input & ei_expr_level = ei_expr_level } { e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expression_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps } e_info cs (expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs (es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level var_env rhs_locals e_state.es_fun_defs cs.cs_symbol_table = (expr, free_vars, { e_state & es_fun_defs = es_fun_defs}, e_info, { cs & cs_symbol_table = cs_symbol_table }) where check_opt_guarded_alts free_vars (GuardedAlts guarded_alts default_expr) e_input e_state e_info cs # (let_vars_list, rev_guarded_exprs, last_expr_level, free_vars, e_state, e_info, cs) = check_guarded_expressions free_vars guarded_alts [] [] e_input e_state e_info cs (default_expr, free_vars, e_state, e_info, cs) = check_default_expr free_vars default_expr { e_input & ei_expr_level = last_expr_level } e_state e_info cs cs = { cs & cs_symbol_table = remove_seq_let_vars e_input.ei_expr_level let_vars_list cs.cs_symbol_table } (result_expr, es_expression_heap) = convert_guards_to_cases rev_guarded_exprs default_expr e_state.es_expression_heap = (result_expr, free_vars, { e_state & es_expression_heap = es_expression_heap }, e_info, cs) check_opt_guarded_alts free_vars (UnGuardedExpr unguarded_expr) e_input e_state e_info cs = check_unguarded_expression free_vars unguarded_expr e_input e_state e_info cs check_default_expr free_vars (Yes default_expr) e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = check_unguarded_expression free_vars default_expr e_input e_state e_info cs = (Yes expr, free_vars, e_state, e_info, cs) check_default_expr free_vars No e_input e_state e_info cs = (No, free_vars, e_state, e_info, cs) convert_guards_to_cases [(let_binds, guard, expr)] result_expr es_expression_heap # (case_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap case_expr = Case { case_expr = guard, case_guards = BasicPatterns BT_Bool [{bp_value = (BVB True), bp_expr = expr}], case_default = result_expr, case_ident = No, case_info_ptr = case_expr_ptr } = build_sequential_lets let_binds case_expr es_expression_heap convert_guards_to_cases [(let_binds, guard, expr) : rev_guarded_exprs] result_expr es_expression_heap # (case_expr_ptr, es_expression_heap) = newPtr EI_Empty es_expression_heap case_expr = Case { case_expr = guard, case_guards = BasicPatterns BT_Bool [{bp_value = (BVB True), bp_expr = expr}], case_default = result_expr, case_ident = No, case_info_ptr = case_expr_ptr } (result_expr, es_expression_heap) = build_sequential_lets let_binds case_expr es_expression_heap = convert_guards_to_cases rev_guarded_exprs (Yes result_expr) es_expression_heap check_guarded_expressions free_vars [gexpr : gexprs] let_vars_list rev_guarded_exprs e_input e_state e_info cs # (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs) = check_guarded_expression free_vars gexpr let_vars_list rev_guarded_exprs e_input e_state e_info cs = check_guarded_expressions free_vars gexprs let_vars_list rev_guarded_exprs { e_input & ei_expr_level = ei_expr_level } e_state e_info cs check_guarded_expressions free_vars [] let_vars_list rev_guarded_exprs {ei_expr_level} e_state e_info cs = (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs) check_guarded_expression free_vars {alt_nodes,alt_guard,alt_expr} let_vars_list rev_guarded_exprs e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (let_binds, let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars alt_nodes let_vars_list { e_input & ei_expr_level = inc ei_expr_level } e_state e_info cs e_input = { e_input & ei_expr_level = ei_expr_level } (guard, free_vars, e_state, e_info, cs) = checkExpression free_vars alt_guard e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars alt_expr e_input e_state e_info cs = (let_vars_list, [(let_binds, guard, expr) : rev_guarded_exprs], ei_expr_level, free_vars, e_state, e_info, cs ) check_unguarded_expression free_vars {ewl_nodes,ewl_expr,ewl_locals} e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # this_expr_level = inc ei_expr_level (loc_defs, var_env, e_state, e_info, cs) = checkLhssOfLocalDefs this_expr_level ei_mod_index ewl_locals e_state e_info cs (binds, let_vars_list, rhs_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars ewl_nodes [] { e_input & ei_expr_level = this_expr_level } e_state e_info cs (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars ewl_expr { e_input & ei_expr_level = rhs_expr_level } e_state e_info cs cs = { cs & cs_symbol_table = remove_seq_let_vars rhs_expr_level let_vars_list cs.cs_symbol_table } (expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index rhs_expr_level ewl_locals e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs (es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable this_expr_level var_env ewl_locals es_fun_defs cs.cs_symbol_table (seq_let_expr, es_expression_heap) = build_sequential_lets binds expr heaps.hp_expression_heap = (seq_let_expr, free_vars, {e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expression_heap = es_expression_heap, es_type_heaps = heaps.hp_type_heaps }, e_info, { cs & cs_symbol_table = cs_symbol_table} ) remove_seq_let_vars level [] symbol_table = symbol_table remove_seq_let_vars level [let_vars : let_vars_list] symbol_table = remove_seq_let_vars (dec level) let_vars_list (removeLocalIdentsFromSymbolTable level let_vars symbol_table) check_sequential_lets free_vars [seq_let:seq_lets] let_vars_list e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # ei_expr_level = inc ei_expr_level e_input = { e_input & ei_expr_level = ei_expr_level } (src_expr, pattern_expr, let_vars, free_vars, e_state, e_info, cs) = check_sequential_let free_vars seq_let e_input e_state e_info cs (binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars seq_lets [let_vars : let_vars_list] e_input e_state e_info cs (let_binds, es_var_heap, es_expression_heap, e_info, cs) = transfromPatternIntoBind ei_mod_index ei_expr_level pattern_expr src_expr e_state.es_var_heap e_state.es_expression_heap e_info cs = ([(seq_let.ndwl_strict, let_binds) : binds], loc_envs, max_expr_level, free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap }, e_info, cs) check_sequential_lets free_vars [] let_vars_list e_input=:{ei_expr_level} e_state e_info cs = ([], let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) check_sequential_let free_vars {ndwl_def={bind_src,bind_dst},ndwl_locals} e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (loc_defs, loc_env, e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index ndwl_locals e_state e_info cs (src_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs (src_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs src_expr e_input e_state e_info cs (es_fun_defs, e_info, {hp_var_heap,hp_expression_heap,hp_type_heaps}, cs) = checkLocalFunctions ei_mod_index ei_expr_level ndwl_locals e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expression_heap, hp_type_heaps = e_state.es_type_heaps } cs (es_fun_defs, cs_symbol_table) = removeLocalsFromSymbolTable ei_expr_level loc_env ndwl_locals es_fun_defs cs.cs_symbol_table (pattern, let_vars, {ps_fun_defs,ps_var_heap}, e_info, cs) = checkPattern ei_expr_level ei_mod_index bind_dst No [] {ps_var_heap = hp_var_heap, ps_fun_defs = es_fun_defs } e_info { cs & cs_symbol_table = cs_symbol_table } = (src_expr, pattern, let_vars, free_vars, { e_state & es_var_heap = ps_var_heap, es_expression_heap = hp_expression_heap, es_type_heaps = hp_type_heaps, es_fun_defs = ps_fun_defs }, e_info, cs) build_sequential_lets :: ![(Bool,[Bind Expression FreeVar])] !Expression !*ExpressionHeap -> (!Expression, !*ExpressionHeap) build_sequential_lets [] expr expr_heap = (expr, expr_heap) build_sequential_lets [(nd_strict,[]) : seq_lets] expr expr_heap = build_sequential_lets seq_lets expr expr_heap build_sequential_lets [(nd_strict,binds) : seq_lets] expr expr_heap # (let_expr, expr_heap) = build_sequential_lets seq_lets expr expr_heap = buildLetExpression binds nd_strict let_expr expr_heap newVarId name = { id_name = name, id_info = nilPtr } determinePatternVariable (Yes bind) var_heap = (bind, var_heap) determinePatternVariable No var_heap # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ({ bind_src = newVarId "_x", bind_dst = new_info_ptr }, var_heap) convertSubPatterns [] result_expr var_store expr_heap opt_dynamics cs = ([], result_expr, var_store, expr_heap, opt_dynamics, cs) convertSubPatterns [pattern : patterns] result_expr var_store expr_heap opt_dynamics cs # (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns patterns result_expr var_store expr_heap opt_dynamics cs (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs = ([var_arg : var_args], result_expr, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Variable name var_info (Yes {bind_src,bind_dst})) result_expr var_store expr_heap opt_dynamics cs # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } free_var = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (let_expr, expr_heap) = buildLetExpression [{ bind_src = Var bound_var, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}] cIsNotStrict result_expr expr_heap = (free_var, let_expr, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Variable name var_info No) result_expr var_store expr_heap opt_dynamics cs = ({ fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Algebraic cons_symbol type_index args opt_var) result_expr var_store expr_heap opt_dynamics cs # (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs type_symbol = { glob_module = cons_symbol.glob_module, glob_object = type_index } case_guards = AlgebraicPatterns type_symbol [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr }] ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, Case { case_expr = Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr }, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Basic basic_val opt_var) result_expr var_store expr_heap opt_dynamics cs # (basic_type, cs) = typeOfBasicValue basic_val cs case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr }] ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, Case { case_expr = Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr}, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Dynamic pattern type opt_var) result_expr var_store expr_heap opt_dynamics cs # (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty }] = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, buildTypeCase (Var { var_name = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }) type_case_patterns No type_case_info_ptr, var_store, expr_heap, [dynamic_info_ptr], cs) convertSubPattern (AP_WildCard opt_var) result_expr var_store expr_heap opt_dynamics cs # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, result_expr, var_store, expr_heap, opt_dynamics, cs) convertSubPattern ap result_expr var_store expr_heap opt_dynamics cs = abort ("convertSubPattern: unknown pattern " ---> ap) typeOfBasicValue :: !BasicValue !*CheckState -> (!BasicType, !*CheckState) typeOfBasicValue (BVI _) cs = (BT_Int, cs) typeOfBasicValue (BVC _) cs = (BT_Char, cs) typeOfBasicValue (BVB _) cs = (BT_Bool, cs) typeOfBasicValue (BVR _) cs = (BT_Real, cs) typeOfBasicValue (BVS _) cs # ({glob_module,glob_object={ds_ident,ds_index,ds_arity}}, cs) = getPredefinedGlobalSymbol PD_StringType PD_PredefinedModule STE_Type 0 cs = (BT_String (TA (MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity) []), cs) checkFunctionBodies (ParsedBody [{pb_args,pb_rhs={rhs_alts,rhs_locals}} : bodies]) e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap, es_fun_defs} e_info cs # (aux_patterns, var_env, {ps_var_heap, ps_fun_defs}, e_info, cs) = check_patterns ei_expr_level ei_mod_index pb_args [] {ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs (rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs) = checkRhs [] rhs_alts rhs_locals e_input { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs } e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table (cb_args, es_var_heap) = mapSt determine_function_arg aux_patterns e_state.es_var_heap (rhss, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs) = check_function_bodies free_vars cb_args bodies e_input { e_state & es_var_heap = es_var_heap, es_dynamics = [] } e_info { cs & cs_symbol_table = cs_symbol_table } (rhs, es_var_heap, es_expression_heap, dynamics_in_patterns, cs) = transform_patterns_into_cases aux_patterns cb_args rhs_expr es_var_heap es_expression_heap dynamics_in_rhs cs = (CheckedBody { cb_args = cb_args, cb_rhs = [rhs : rhss] }, free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs) where check_patterns def_level mod_index [pattern : patterns] var_env var_store e_info cs # (aux_pat, var_env, var_store, e_info, cs) = checkPattern def_level mod_index pattern No var_env var_store e_info cs (aux_pats, var_env, var_store, e_info, cs) = check_patterns def_level mod_index patterns var_env var_store e_info cs = ([aux_pat : aux_pats], var_env, var_store, e_info, cs) check_patterns def_level mod_index [] var_env var_store e_info cs = ([], var_env, var_store, e_info, cs) determine_function_arg (AP_Variable name var_info (Yes {bind_src, bind_dst})) var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Variable name var_info No) var_store = ({ fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Algebraic _ _ _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Basic _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Dynamic _ _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg _ var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable No var_store = ({ fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) check_function_bodies free_vars fun_args [{pb_args,pb_rhs={rhs_alts,rhs_locals}} : bodies] e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap,es_fun_defs} e_info cs # (aux_patterns, var_env, {ps_var_heap, ps_fun_defs}, e_info, cs) = check_patterns ei_expr_level ei_mod_index pb_args [] {ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs} (rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table (rhs_exprs, free_vars, e_state=:{es_dynamics,es_expression_heap,es_var_heap}, e_info, cs) = check_function_bodies free_vars fun_args bodies e_input { e_state & es_dynamics = [] } e_info { cs & cs_symbol_table = cs_symbol_table } (rhs_expr, es_var_heap, es_expression_heap, dynamics_in_patterns, cs) = transform_patterns_into_cases aux_patterns fun_args rhs_expr es_var_heap es_expression_heap dynamics_in_rhs cs = ([rhs_expr : rhs_exprs], free_vars, { e_state & es_var_heap = es_var_heap, es_expression_heap = es_expression_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs) check_function_bodies free_vars fun_args [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) transform_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr var_store expr_heap opt_dynamics cs # (patterns_expr, var_store, expr_heap, opt_dynamics, cs) = transform_succeeding_patterns_into_cases patterns fun_args result_expr var_store expr_heap opt_dynamics cs = transform_pattern_into_cases pattern fun_arg patterns_expr var_store expr_heap opt_dynamics cs where transform_succeeding_patterns_into_cases [] _ result_expr var_store expr_heap opt_dynamics cs = (result_expr, var_store, expr_heap, opt_dynamics, cs) transform_succeeding_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr var_store expr_heap opt_dynamics cs # (patterns_expr, var_store, expr_heap, opt_dynamics, cs) = transform_succeeding_patterns_into_cases patterns fun_args result_expr var_store expr_heap opt_dynamics cs = transform_pattern_into_cases pattern fun_arg patterns_expr var_store expr_heap opt_dynamics cs transform_patterns_into_cases [] _ result_expr var_store expr_heap opt_dynamics cs = (result_expr, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases :: !AuxiliaryPattern !FreeVar !Expression !*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState -> (!Expression, !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState) transform_pattern_into_cases (AP_Variable name var_info opt_var) fun_arg=:{fv_info_ptr,fv_name} result_expr var_store expr_heap opt_dynamics cs = case opt_var of Yes {bind_src, bind_dst} | bind_dst == fv_info_ptr # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict = cIsStrict, let_binds = [ { bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}], let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs) # (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap (var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict = cIsStrict, let_binds = [ { bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 }, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}, { bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 }, bind_dst = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }}], let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs) No | var_info == fv_info_ptr -> (result_expr, var_store, expr_heap, opt_dynamics, cs) # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict = cIsStrict, let_binds = [{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, bind_dst = { fv_name = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }}], let_expr = result_expr, let_info_ptr = let_expr_ptr}, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Algebraic cons_symbol type_index args opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs # (var_args, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr var_store expr_heap opt_dynamics cs type_symbol = {glob_module = cons_symbol.glob_module, glob_object = type_index} (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap case_guards = AlgebraicPatterns type_symbol [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr }] (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr }, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Basic basic_val opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs # (basic_type, cs) = typeOfBasicValue basic_val cs (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr }] (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr }, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Dynamic pattern type opt_var) fun_arg result_expr var_store expr_heap opt_dynamics cs # (var_arg, result_expr, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr var_store expr_heap opt_dynamics cs (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_patterns_vars = [], dp_type_code = TCE_Empty }] = (buildTypeCase act_var type_case_patterns No type_case_info_ptr, var_store, expr_heap, [dynamic_info_ptr], cs) transform_pattern_into_cases (AP_WildCard _) fun_arg result_expr var_store expr_heap opt_dynamics cs = (result_expr, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Empty name) fun_arg result_expr var_store expr_heap opt_dynamics cs = (result_expr, var_store, expr_heap, opt_dynamics, cs) transform_pattern_variable :: !FreeVar !(Optional !(Bind Ident VarInfoPtr)) !Expression !*ExpressionHeap -> (!Expression, !Expression, !*ExpressionHeap) transform_pattern_variable {fv_info_ptr,fv_name} (Yes {bind_src,bind_dst}) result_expr expr_heap | bind_dst == fv_info_ptr # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap) # (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap (var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 }, Let { let_strict = cIsNotStrict, let_binds = [{ bind_src = Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 }, bind_dst = { fv_name = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }}], let_expr = result_expr, let_info_ptr = let_expr_ptr}, expr_heap) transform_pattern_variable {fv_info_ptr,fv_name} No result_expr expr_heap # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap) initializeContextVariables :: ![TypeContext] !*VarHeap -> (![TypeContext], !*VarHeap) initializeContextVariables contexts var_heap = mapSt add_variable_to_context contexts var_heap where add_variable_to_context context var_heap # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ({ context & tc_var = new_info_ptr}, var_heap) checkFunction :: !Index !Index !Level !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef},!*ExpressionInfo, !*Heaps, !*CheckState); checkFunction mod_index fun_index def_level fun_defs e_info=:{ef_type_defs,ef_modules,ef_class_defs} heaps=:{hp_var_heap,hp_expression_heap,hp_type_heaps} cs=:{cs_error} #! fun_def = fun_defs.[fun_index] # {fun_symb,fun_pos,fun_body,fun_type} = fun_def position = newPosition fun_symb fun_pos cs = { cs & cs_error = pushErrorAdmin position cs_error } (fun_type, ef_type_defs, ef_class_defs, ef_modules, hp_var_heap, hp_type_heaps, cs) = check_function_type fun_type mod_index ef_type_defs ef_class_defs ef_modules hp_var_heap hp_type_heaps cs e_info = { e_info & ef_type_defs = ef_type_defs, ef_class_defs = ef_class_defs, ef_modules = ef_modules } e_state = { es_var_heap = hp_var_heap, es_expression_heap = hp_expression_heap, es_type_heaps = hp_type_heaps, es_dynamics = [], es_calls = [], es_fun_defs = fun_defs } e_input = { ei_expr_level = inc def_level, ei_fun_index = fun_index, ei_fun_level = inc def_level, ei_mod_index = mod_index } (fun_body, free_vars, e_state, e_info, cs) = checkFunctionBodies fun_body e_input e_state e_info cs # {es_fun_defs,es_calls,es_var_heap,es_expression_heap,es_type_heaps,es_dynamics} = e_state (ef_type_defs, ef_modules, es_type_heaps, es_expression_heap, cs) = checkDynamicTypes mod_index es_dynamics fun_type e_info.ef_type_defs e_info.ef_modules es_type_heaps es_expression_heap cs cs = { cs & cs_error = popErrorAdmin cs.cs_error } fun_info = { fun_def.fun_info & fi_calls = es_calls, fi_def_level = def_level, fi_free_vars = free_vars, fi_dynamics = es_dynamics } fun_defs = { es_fun_defs & [fun_index] = { fun_def & fun_body = fun_body, fun_index = fun_index, fun_info = fun_info, fun_type = fun_type}} (fun_defs, cs_symbol_table) = remove_calls_from_symbol_table fun_index def_level es_calls fun_defs cs.cs_symbol_table = (fun_defs, { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules }, { heaps & hp_var_heap = es_var_heap, hp_expression_heap = es_expression_heap, hp_type_heaps = es_type_heaps }, { cs & cs_symbol_table = cs_symbol_table }) where check_function_type (Yes ft) module_index type_defs class_defs modules var_heap type_heaps cs # (ft, _, type_defs, class_defs, modules, type_heaps, cs) = checkSymbolType module_index ft SP_None type_defs class_defs modules type_heaps cs (st_context, var_heap) = initializeContextVariables ft.st_context var_heap = (Yes { ft & st_context = st_context } , type_defs, class_defs, modules, var_heap, type_heaps, cs) check_function_type No module_index type_defs class_defs modules var_heap type_heaps cs = (No, type_defs, class_defs, modules, var_heap, type_heaps, cs) remove_calls_from_symbol_table fun_index fun_level [{fc_index, fc_level} : fun_calls] fun_defs symbol_table | fc_level <= fun_level #! {fun_symb={id_info}} = fun_defs.[fc_index] #! entry = sreadPtr id_info symbol_table # (c,cs) = get_calls entry.ste_kind | fun_index == c = remove_calls_from_symbol_table fun_index fun_level fun_calls fun_defs (symbol_table <:= (id_info,{ entry & ste_kind = STE_FunctionOrMacro cs})) = abort " Error in remove_calls_from_symbol_table" = remove_calls_from_symbol_table fun_index fun_level fun_calls fun_defs symbol_table remove_calls_from_symbol_table fun_index fun_level [] fun_defs symbol_table = (fun_defs, symbol_table) get_calls (STE_FunctionOrMacro [x:xs]) = (x,xs) checkFunctions :: !Index !Level !Index !Index !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef}, !*ExpressionInfo, !*Heaps, !*CheckState) checkFunctions mod_index level from_index to_index fun_defs e_info heaps cs | from_index == to_index = (fun_defs, e_info, heaps, cs) # (fun_defs, e_info, heaps, cs) = checkFunction mod_index from_index level fun_defs e_info heaps cs = checkFunctions mod_index level (inc from_index) to_index fun_defs e_info heaps cs checkMacros :: !Index !IndexRange !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef}, !*ExpressionInfo, !*Heaps, !*CheckState); checkMacros mod_index range fun_defs e_info heaps cs # (fun_defs, e_info=:{ef_modules}, heaps=:{hp_var_heap, hp_expression_heap}, cs=:{cs_symbol_table,cs_error}) = checkFunctions mod_index cGlobalScope range.ir_from range.ir_to fun_defs e_info heaps cs (fun_defs, ef_modules, hp_var_heap, hp_expression_heap, cs_symbol_table, cs_error) = partitionateMacros range mod_index fun_defs ef_modules hp_var_heap hp_expression_heap cs_symbol_table cs_error = (fun_defs, { e_info & ef_modules = ef_modules }, {heaps & hp_var_heap = hp_var_heap, hp_expression_heap = hp_expression_heap}, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }) checkInstanceBodies :: !IndexRange !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!*{#FunDef},!*ExpressionInfo,!*Heaps, !*CheckState); checkInstanceBodies {ir_from, ir_to} fun_defs e_info heaps cs = checkFunctions cIclModIndex cGlobalScope ir_from ir_to fun_defs e_info heaps cs instance < FunDef where (<) fd1 fd2 = fd1.fun_symb.id_name < fd2.fun_symb.id_name //createCommonDefinitions :: !(CollectedDefinitions ClassInstance) -> *CommonDefs createCommonDefinitions {def_types,def_constructors,def_selectors,def_macros,def_classes,def_members,def_instances} var_heap # (cons_defs, var_heap) = mapSt new_constructor def_constructors var_heap (sel_defs, var_heap) = mapSt new_selector def_selectors var_heap = ({ com_type_defs = { type \\ type <- def_types } , com_cons_defs = { cons \\ cons <- cons_defs } , com_selector_defs = { sel \\ sel <- sel_defs } // , com_macro_defs = { macro \\ macro <- def_macros } , com_class_defs = { class_def \\ class_def <- def_classes } , com_member_defs = { member \\ member <- def_members } , com_instance_defs = { next_instance \\ next_instance <- def_instances } }, var_heap) where new_constructor cons var_heap # (new_type_ptr, var_heap) = newPtr VI_Empty var_heap = (ParsedConstructorToConsDef cons new_type_ptr, var_heap) new_selector sel var_heap # (new_type_ptr, var_heap) = newPtr VI_Empty var_heap = (ParsedSelectorToSelectorDef sel new_type_ptr, var_heap) IsMainDclMod is_dcl module_index :== is_dcl && module_index == cIclModIndex /* MW was checkCommonDefinitions :: !Bool !Index !*CommonDefs !*{# DclModule} !*TypeHeaps !*VarHeap !*CheckState -> (!*CommonDefs, !*{# DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState) checkCommonDefinitions is_dcl module_index common modules type_heaps var_heap cs # (com_type_defs, com_cons_defs, com_selector_defs, modules, type_heaps, cs) = checkTypeDefs (IsMainDclMod is_dcl module_index) common.com_type_defs module_index common.com_cons_defs common.com_selector_defs modules type_heaps cs (com_class_defs, com_member_defs, com_type_defs, modules, type_heaps, cs) = checkTypeClasses 0 module_index common.com_class_defs common.com_member_defs com_type_defs modules type_heaps cs (com_member_defs, com_type_defs, com_class_defs, modules, type_heaps, var_heap, cs) = checkMemberTypes module_index com_member_defs com_type_defs com_class_defs modules type_heaps var_heap cs (com_instance_defs, com_type_defs, com_class_defs, com_member_defs, modules, type_heaps, cs) = checkInstanceDefs module_index common.com_instance_defs com_type_defs com_class_defs com_member_defs modules type_heaps cs (com_class_defs, modules, new_type_defs, new_selector_defs, new_cons_defs, th_vars, var_heap, cs) = createClassDictionaries module_index com_class_defs modules (size com_type_defs) (size com_selector_defs) (size com_cons_defs) type_heaps.th_vars var_heap cs com_type_defs = { type_def \\ type_def <- [ type_def \\ type_def <-: com_type_defs ] ++ new_type_defs } com_selector_defs = { sel_def \\ sel_def <- [ sel_def \\ sel_def <-: com_selector_defs ] ++ new_selector_defs } com_cons_defs = { cons_def \\ cons_def <- [ cons_def \\ cons_def <-: com_cons_defs ] ++ new_cons_defs } = ({common & com_type_defs = com_type_defs, com_cons_defs = com_cons_defs, com_selector_defs = com_selector_defs, com_class_defs = com_class_defs, com_member_defs = com_member_defs, com_instance_defs = com_instance_defs }, modules, { type_heaps & th_vars = th_vars }, var_heap, cs) */ checkCommonDefinitions :: !Bool !Index !{#Int} !*CommonDefs !*{# DclModule} !*TypeHeaps !*VarHeap !*CheckState -> (!*CommonDefs, !*{# DclModule}, !*TypeHeaps, !*VarHeap, !*CheckState) checkCommonDefinitions is_dcl module_index upper_limits common modules type_heaps var_heap cs # (com_type_defs, com_cons_defs, com_selector_defs, modules, type_heaps, cs) = checkTypeDefs (IsMainDclMod is_dcl module_index) common.com_type_defs module_index upper_limits.[cTypeDefs] common.com_cons_defs common.com_selector_defs modules type_heaps cs (com_class_defs, com_member_defs, com_type_defs, modules, type_heaps, cs) = checkTypeClasses 0 module_index upper_limits.[cClassDefs] common.com_class_defs common.com_member_defs com_type_defs modules type_heaps cs (com_member_defs, com_type_defs, com_class_defs, modules, type_heaps, var_heap, cs) = checkMemberTypes module_index upper_limits.[cMemberDefs] com_member_defs com_type_defs com_class_defs modules type_heaps var_heap cs (com_instance_defs, com_type_defs, com_class_defs, com_member_defs, modules, type_heaps, cs) = checkInstanceDefs module_index common.com_instance_defs com_type_defs com_class_defs com_member_defs modules type_heaps cs (com_class_defs, modules, new_type_defs, new_selector_defs, new_cons_defs, th_vars, var_heap, cs) = createClassDictionaries module_index com_class_defs modules (size com_type_defs) (size com_selector_defs) (size com_cons_defs) upper_limits.[cClassDefs] type_heaps.th_vars var_heap cs com_type_defs = { type_def \\ type_def <- [ type_def \\ type_def <-: com_type_defs ] ++ new_type_defs } com_selector_defs = { sel_def \\ sel_def <- [ sel_def \\ sel_def <-: com_selector_defs ] ++ new_selector_defs } com_cons_defs = { cons_def \\ cons_def <- [ cons_def \\ cons_def <-: com_cons_defs ] ++ new_cons_defs } = ({common & com_type_defs = com_type_defs, com_cons_defs = com_cons_defs, com_selector_defs = com_selector_defs, com_class_defs = com_class_defs, com_member_defs = com_member_defs, com_instance_defs = com_instance_defs }, modules, { type_heaps & th_vars = th_vars }, var_heap, cs) strictMapAppendi :: !(Index -> a -> b) !Index ![a] ![b] -> [b] strictMapAppendi f i [] t = t strictMapAppendi f i [x : xs] t #! t = strictMapAppendi f (inc i) xs t el = f i x = [el : t] collectCommonfinitions :: !(CollectedDefinitions ClassInstance a) ![Declaration] -> [Declaration] collectCommonfinitions {def_types,def_constructors,def_selectors,def_macros,def_classes,def_members,def_instances} defs # defs = strictMapAppendi (\dcl_index {td_name} -> { dcl_ident = td_name, dcl_kind = STE_Type, dcl_index = dcl_index }) 0 def_types defs defs = strictMapAppendi (\dcl_index {pc_cons_name} -> { dcl_ident = pc_cons_name, dcl_kind = STE_Constructor, dcl_index = dcl_index }) 0 def_constructors defs defs = strictMapAppendi (\dcl_index {ps_selector_name,ps_field_name} -> { dcl_ident = ps_field_name, dcl_kind = STE_Field ps_selector_name, dcl_index = dcl_index }) 0 def_selectors defs defs = strictMapAppendi (\dcl_index {class_name} -> { dcl_ident = class_name, dcl_kind = STE_Class, dcl_index = dcl_index }) 0 def_classes defs defs = strictMapAppendi (\dcl_index {me_symb} -> { dcl_ident = me_symb, dcl_kind = STE_Member, dcl_index = dcl_index }) 0 def_members defs defs = strictMapAppendi (\dcl_index {ins_ident} -> { dcl_ident = ins_ident, dcl_kind = STE_Instance, dcl_index = dcl_index }) 0 def_instances defs = defs collectMacros {ir_from,ir_to} defs macro_defs = collectGlobalFunctions ir_from ir_to defs macro_defs collectFunctionTypes fun_types defs = strictMapAppendi (\dcl_index {ft_symb} -> { dcl_ident = ft_symb, dcl_kind = STE_DclFunction, dcl_index = dcl_index }) 0 fun_types defs collectGlobalFunctions from_index to_index defs fun_defs | from_index == to_index = (defs, fun_defs) #! fun_def = fun_defs.[from_index] (defs, fun_defs) = collectGlobalFunctions (inc from_index) to_index defs fun_defs = ([{ dcl_ident = fun_def.fun_symb, dcl_kind = STE_FunctionOrMacro [], dcl_index = from_index } : defs], fun_defs) combineDclAndIclModule MK_Main modules icl_defs cs // MW was = (modules, cs) = (modules, createArray cConversionTableSize [], cs) combineDclAndIclModule _ modules icl_defs cs /* MW was #! dcl_mod = modules.[cIclModIndex] # {dcl_declared={dcls_local},dcl_macros} = dcl_mod cs = addGlobalDefinitionsToSymbolTable icl_defs cs conversion_table = { createArray size NoIndex \\ size <-: count_defs (createArray cConversionTableSize 0) dcls_local } (conversion_table, cs) = build_conversion_table conversion_table dcls_local dcl_macros.ir_from cs cs_symbol_table = removeDeclarationsFromSymbolTable icl_defs cGlobalScope cs.cs_symbol_table = ( { modules & [cIclModIndex] = { dcl_mod & dcl_conversions = Yes conversion_table }}, { cs & cs_symbol_table = cs_symbol_table }) */ #! dcl_mod = modules.[cIclModIndex] # {dcl_declared={dcls_local},dcl_macros} = dcl_mod cs = addGlobalDefinitionsToSymbolTable icl_defs cs sizes = count_defs (createArray cConversionTableSize 0) dcls_local conversion_table = { createArray size NoIndex \\ size <-: sizes } defs_only_in_dcl = { (size, []) \\ size <-: sizes } (conversion_table, defs_only_in_dcl_l, cs) = build_conversion_table conversion_table dcls_local dcl_macros.ir_from defs_only_in_dcl cs # cs_symbol_table = removeDeclarationsFromSymbolTable icl_defs cGlobalScope cs.cs_symbol_table = ( { modules & [cIclModIndex] = { dcl_mod & dcl_conversions = Yes conversion_table }} , defs_only_in_dcl_l , { cs & cs_symbol_table = cs_symbol_table } ) where // MW was build_conversion_table conversion_table [{dcl_ident=ident=:{id_info},dcl_kind,dcl_index} : local_defs] first_macro_index cs=:{cs_symbol_table, cs_error} build_conversion_table conversion_table [decl=:{dcl_ident=ident=:{id_info},dcl_kind,dcl_index} : local_defs] first_macro_index defs_only_in_dcl cs=:{cs_symbol_table, cs_error} #! entry = sreadPtr id_info cs_symbol_table # {ste_kind,ste_index,ste_def_level} = entry /* MW was | ste_def_level == cGlobalScope && ste_kind == dcl_kind # def_index = toInt dcl_kind dcl_index = if (def_index == cMacroDefs) (dcl_index - first_macro_index) dcl_index # conversion_table = { conversion_table & [def_index].[dcl_index] = ste_index } = build_conversion_table conversion_table local_defs first_macro_index cs = build_conversion_table conversion_table local_defs first_macro_index { cs & cs_error = checkError ident "inconsistently defined" cs_error } = build_conversion_table conversion_table local_defs first_macro_index { cs & cs_error = checkError ident "inconsistently defined" cs_error } build_conversion_table conversion_table [] first_macro_index cs = (conversion_table, cs) */ def_index = toInt dcl_kind dcl_index = if (def_index == cMacroDefs) (dcl_index - first_macro_index) dcl_index | ste_kind == STE_Empty && can_be_only_in_dcl dcl_kind # ((top,defs), defs_only_in_dcl) = defs_only_in_dcl![def_index] defs_only_in_dcl = { defs_only_in_dcl & [def_index] = (inc top, [decl:defs])} conversion_table = { conversion_table & [def_index].[dcl_index] = top } = build_conversion_table conversion_table local_defs first_macro_index defs_only_in_dcl cs | ste_def_level == cGlobalScope && ste_kind == dcl_kind # conversion_table = { conversion_table & [def_index].[dcl_index] = ste_index } = build_conversion_table conversion_table local_defs first_macro_index defs_only_in_dcl cs = build_conversion_table conversion_table local_defs first_macro_index defs_only_in_dcl { cs & cs_error = checkError ident "inconsistently defined" cs_error } build_conversion_table conversion_table [] first_macro_index defs_only_in_dcl cs = (conversion_table, {reverse decls \\ (_,decls) <-: defs_only_in_dcl}, cs) // MW.. can_be_only_in_dcl STE_Type = True can_be_only_in_dcl STE_Constructor = True can_be_only_in_dcl (STE_Field _) = True can_be_only_in_dcl STE_Class = True can_be_only_in_dcl STE_Member = True can_be_only_in_dcl (STE_FunctionOrMacro _) = True can_be_only_in_dcl STE_DclFunction = False can_be_only_in_dcl _ = False // .. MW count_defs :: !*{# Int} ![Declaration] -> *{# Int} count_defs def_counts [] = def_counts count_defs def_counts [{dcl_kind} : local_defs] # def_index = toInt dcl_kind #! count = def_counts.[def_index] = count_defs { def_counts & [def_index] = inc count } local_defs /* MW moved cIsNotADclModule :== False cIsADclModule :== True */ (<=<) infixl (<=<) state fun :== fun state checkModule :: !ScannedModule !Int ![FunDef] !ScannedModule !ScannedModule ![ScannedModule] !*PredefinedSymbols !*SymbolTable !*File -> (!Bool, !*IclModule, *{# DclModule}, *{! Group}, !(Optional {# Index}), !*Heaps, !*PredefinedSymbols, !*SymbolTable, *File) checkModule {mod_type,mod_name,mod_imports,mod_imported_objects,mod_defs = cdefs} nr_of_global_funs fun_defs dcl_mod pre_def_mod scanned_modules predef_symbols symbol_table err_file # error = {ea_file = err_file, ea_loc = [], ea_ok = True } first_inst_index = length fun_defs (inst_fun_defs, def_instances) = convert_class_instances cdefs.def_instances first_inst_index icl_functions = { next_fun \\ next_fun <- fun_defs ++ inst_fun_defs } cdefs = { cdefs & def_instances = def_instances } #! nr_of_functions = size icl_functions # local_defs = collectCommonfinitions cdefs [] (local_defs, icl_functions) = collectGlobalFunctions 0 nr_of_global_funs local_defs icl_functions (local_defs, icl_functions) = collectMacros cdefs.def_macros local_defs icl_functions (scanned_modules, icl_functions, cs) = add_modules_to_symbol_table [ dcl_mod, pre_def_mod : scanned_modules ] 0 icl_functions { cs_symbol_table = symbol_table, cs_predef_symbols = predef_symbols, cs_error = error } (init_dcl_modules, hp_var_heap) = mapSt initialDclModule scanned_modules newHeap // MW was (dcl_modules, cs) (dcl_modules, defs_only_in_main_dcl, cs) = combineDclAndIclModule mod_type { dcl_module \\ dcl_module <- init_dcl_modules } local_defs cs heaps = { hp_var_heap = hp_var_heap, hp_expression_heap = newHeap, hp_type_heaps = { th_vars = newHeap, th_attrs = newHeap }} (dcl_modules, icl_functions, heaps, cs) = check_predefined_module pre_def_mod.mod_name dcl_modules icl_functions heaps cs iinfo = { ii_modules = dcl_modules, ii_funs_and_macros = icl_functions, ii_next_num = 0, ii_deps = [] } (iinfo, heaps, cs) = check_dcl_module iinfo heaps cs (_, {ii_modules,ii_funs_and_macros = icl_functions}, heaps, cs) = checkImports mod_imports iinfo heaps cs (nr_of_modules, (f_consequences, ii_modules, icl_functions, hp_expression_heap, cs)) = check_completeness_of_all_dcl_modules ii_modules icl_functions heaps.hp_expression_heap cs all_defs_only_in_main_dcl = defs_only_in_main_dcl.[cTypeDefs]++defs_only_in_main_dcl.[cConstructorDefs] ++defs_only_in_main_dcl.[cSelectorDefs]++defs_only_in_main_dcl.[cClassDefs] ++defs_only_in_main_dcl.[cMemberDefs]++defs_only_in_main_dcl.[cMacroDefs] (dcls_explicit, dcl_modules, cs) = addImportsToSymbolTable mod_imports [] ii_modules cs cs = addGlobalDefinitionsToSymbolTable (local_defs++all_defs_only_in_main_dcl) cs (_, dcl_modules, icl_functions, hp_expression_heap, cs) = check_completeness_of_module nr_of_modules dcls_explicit (mod_name.id_name+++".icl") (f_consequences, dcl_modules, icl_functions, hp_expression_heap, cs) heaps = { heaps & hp_expression_heap=hp_expression_heap } (icl_common, hp_var_heap) = createCommonDefinitions cdefs heaps.hp_var_heap (main_dcl_module, dcl_modules) = dcl_modules![cIclModIndex] (upper_limits, icl_common) = get_upper_limits icl_common icl_common = add_defs_only_in_main_dcl defs_only_in_main_dcl main_dcl_module icl_common (icl_common, dcl_modules, hp_type_heaps, hp_var_heap, cs) = checkCommonDefinitions cIsNotADclModule cIclModIndex upper_limits icl_common dcl_modules heaps.hp_type_heaps hp_var_heap cs (instance_types, icl_common, dcl_modules, hp_var_heap, hp_type_heaps, cs) = checkInstances cIclModIndex icl_common dcl_modules hp_var_heap hp_type_heaps cs heaps = { heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap } e_info = { ef_type_defs = icl_common.com_type_defs, ef_selector_defs = icl_common.com_selector_defs, ef_class_defs = icl_common.com_class_defs, ef_cons_defs = icl_common.com_cons_defs, ef_member_defs = icl_common.com_member_defs, ef_modules = dcl_modules } (icl_functions, e_info, heaps, cs) = checkMacros cIclModIndex cdefs.def_macros icl_functions e_info heaps cs (icl_functions, e_info, heaps, cs) = checkFunctions cIclModIndex cGlobalScope 0 nr_of_global_funs icl_functions e_info heaps cs (icl_functions, e_info, heaps, {cs_symbol_table, cs_predef_symbols, cs_error}) = checkInstanceBodies {ir_from = first_inst_index, ir_to = nr_of_functions} icl_functions e_info heaps cs (icl_imported, dcl_modules, cs_symbol_table) = retrieveImportsFromSymbolTable mod_imports [] e_info.ef_modules cs_symbol_table | cs_error.ea_ok # {hp_var_heap,hp_type_heaps,hp_expression_heap} = heaps (spec_functions, dcl_modules, class_instances, icl_functions, new_nr_of_functions, dcl_icl_conversions, var_heap, th_vars, expr_heap) = collect_specialized_functions_in_dcl_module dcl_modules icl_common.com_instance_defs icl_functions nr_of_functions hp_var_heap hp_type_heaps.th_vars hp_expression_heap icl_global_function_range = {ir_from = 0, ir_to = nr_of_global_funs} icl_instances = {ir_from = first_inst_index, ir_to = nr_of_functions} icl_specials = {ir_from = nr_of_functions, ir_to = new_nr_of_functions} icl_functions = copy_instance_types instance_types { icl_fun \\ icl_fun <- [ icl_fun \\ icl_fun <-: icl_functions ] ++ spec_functions } (dcl_modules, class_instances, icl_functions, cs_predef_symbols) = adjust_instance_types_of_array_functions_in_std_array_icl dcl_modules class_instances icl_functions cs_predef_symbols (groups, icl_functions, dcl_modules, var_heap, expr_heap, cs_symbol_table, cs_error) = partitionateAndLiftFunctions [icl_global_function_range, icl_instances] cIclModIndex icl_functions dcl_modules var_heap expr_heap cs_symbol_table cs_error icl_common = { icl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs, com_cons_defs = e_info.ef_cons_defs, com_member_defs = e_info.ef_member_defs, com_instance_defs = class_instances } icl_mod = { icl_name = mod_name, icl_functions = icl_functions, icl_common = icl_common, icl_instances = icl_instances, icl_specials = icl_specials, // MW was icl_declared = {dcls_local = local_defs, dcls_import = icl_imported} } // RWS ... icl_imported_objects = mod_imported_objects, // ... RWS icl_declared = {dcls_local = local_defs, dcls_import = icl_imported, dcls_explicit=dcls_explicit} } = (cs_error.ea_ok, icl_mod, dcl_modules, groups, dcl_icl_conversions, { heaps & hp_var_heap = var_heap, hp_expression_heap = expr_heap, hp_type_heaps = { hp_type_heaps & th_vars = th_vars }}, cs_predef_symbols, cs_symbol_table, cs_error.ea_file) # icl_common = { icl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs, com_cons_defs = e_info.ef_cons_defs, com_member_defs = e_info.ef_member_defs } icl_mod = { icl_name = mod_name, icl_functions = icl_functions, icl_common = icl_common, icl_instances = {ir_from = first_inst_index, ir_to = nr_of_functions}, icl_specials = {ir_from = nr_of_functions, ir_to = nr_of_functions}, // MW was icl_declared = {dcls_local = local_defs, dcls_import = icl_imported} } // RWS ... icl_imported_objects = mod_imported_objects, // ... RWS icl_declared = {dcls_local = local_defs, dcls_import = icl_imported, dcls_explicit=dcls_explicit} } = (False, icl_mod, dcl_modules, {}, No, heaps, cs_predef_symbols, cs_symbol_table, cs_error.ea_file) where convert_class_instances [pi=:{pi_members} : pins] next_fun_index # ins_members = sort pi_members (member_symbols, next_fun_index) = determine_indexes_of_members ins_members next_fun_index (next_fun_defs, cins) = convert_class_instances pins next_fun_index = (ins_members ++ next_fun_defs, [ParsedInstanceToClassInstance pi { member \\ member <- member_symbols} : cins]) convert_class_instances [] next_fun_index = ([], []) determine_indexes_of_members [{fun_symb,fun_arity}:members] next_fun_index #! (member_symbols, last_fun_index) = determine_indexes_of_members members (inc next_fun_index) = ([{ds_ident = fun_symb, ds_index = next_fun_index, ds_arity = fun_arity} : member_symbols], last_fun_index) determine_indexes_of_members [] next_fun_index = ([], next_fun_index) add_modules_to_symbol_table [] mod_index macro_and_fun_defs cs=:{cs_predef_symbols,cs_symbol_table} # (cs_predef_symbols, cs_symbol_table) = (cs_predef_symbols, cs_symbol_table) <=< adjust_predefined_module_symbol PD_StdArray <=< adjust_predefined_module_symbol PD_StdEnum <=< adjust_predefined_module_symbol PD_StdBool <=< adjust_predefined_module_symbol PD_StdDynamics <=< adjust_predefined_module_symbol PD_PredefinedModule = ([], macro_and_fun_defs, { cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table}) where adjust_predefined_module_symbol :: !Index !(!*PredefinedSymbols, !*SymbolTable) -> (!*PredefinedSymbols, !*SymbolTable) adjust_predefined_module_symbol predef_index (pre_def_symbols, symbol_table) # (mod_symb, pre_def_symbols) = pre_def_symbols![predef_index] #! mod_entry = sreadPtr mod_symb.pds_ident.id_info symbol_table = case mod_entry.ste_kind of STE_Module _ -> ({ pre_def_symbols & [predef_index] = { mod_symb & pds_module = cIclModIndex, pds_def = mod_entry.ste_index }}, symbol_table) _ -> (pre_def_symbols, symbol_table) add_modules_to_symbol_table [mod=:{mod_defs} : mods] mod_index macro_and_fun_defs cs=:{cs_predef_symbols,cs_symbol_table, cs_error} # def_instances = convert_class_instances mod_defs.def_instances mod_defs = { mod_defs & def_instances = def_instances } defs = collectFunctionTypes mod_defs.def_funtypes (collectCommonfinitions mod_defs []) (defs, macro_and_fun_defs) = collectMacros mod_defs.def_macros defs macro_and_fun_defs mod = { mod & mod_defs = mod_defs } (cs_symbol_table, cs_error) = addDefToSymbolTable cGlobalScope mod_index mod.mod_name (STE_Module mod) cs_symbol_table cs_error (mods, macro_and_fun_defs, cs) = add_modules_to_symbol_table mods (inc mod_index) macro_and_fun_defs { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error } = ([(mod, defs) : mods], macro_and_fun_defs, cs) where convert_class_instances :: ![ParsedInstance a] -> [ClassInstance] convert_class_instances [pi : pins] = [ParsedInstanceToClassInstance pi {} : convert_class_instances pins] convert_class_instances [] = [] check_predefined_module {id_info} modules macro_and_fun_defs heaps cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # cs = { cs & cs_symbol_table = cs_symbol_table <:= (id_info, { entry & ste_kind = STE_ClosedModule })} {ste_kind = STE_Module mod, ste_index} = entry (modules, macro_and_fun_defs, heaps, cs) = checkDclModule mod ste_index modules macro_and_fun_defs heaps cs ({dcl_declared={dcls_import,dcls_local}}, modules) = modules![ste_index] = (modules, macro_and_fun_defs, heaps, addDeclaredSymbolsToSymbolTable cIsADclModule ste_index dcls_local dcls_import cs) check_dcl_module iinfo=:{ii_modules} heaps cs=:{cs_symbol_table} #! dcl_mod = ii_modules.[cIclModIndex] # dcl_info = dcl_mod.dcl_name.id_info #! entry = sreadPtr dcl_info cs_symbol_table # (_, iinfo, heaps, cs) = checkImport dcl_info entry iinfo heaps cs = (iinfo, heaps, cs) collect_specialized_functions_in_dcl_module :: !w:{# DclModule} !v:{# ClassInstance} !u:{# FunDef} !Index !*VarHeap !*TypeVarHeap !*ExpressionHeap -> (![FunDef], !w:{# DclModule}, !v:{# ClassInstance}, !u:{# FunDef}, !Index, !(Optional {# Index}), !*VarHeap, !*TypeVarHeap, !*ExpressionHeap) collect_specialized_functions_in_dcl_module modules icl_instances icl_functions first_free_index var_heap type_var_heap expr_heap #! dcl_mod = modules.[cIclModIndex] # {dcl_specials,dcl_functions,dcl_common,dcl_class_specials,dcl_conversions} = dcl_mod = case dcl_conversions of Yes conversion_table # (new_conversion_table, icl_instances) = build_conversion_table_for_instances_of_dcl_mod dcl_specials first_free_index dcl_functions dcl_common.com_instance_defs conversion_table icl_instances (spec_fun_defs, (icl_functions, last_index, (var_heap, type_var_heap, expr_heap))) = collect_specialized_functions dcl_specials.ir_from dcl_specials.ir_to dcl_functions new_conversion_table (icl_functions, first_free_index, (var_heap, type_var_heap, expr_heap)) -> (spec_fun_defs, modules, icl_instances, icl_functions, last_index, Yes new_conversion_table, var_heap, type_var_heap, expr_heap) No -> ([], modules, icl_instances, icl_functions, first_free_index, No, var_heap, type_var_heap, expr_heap) where build_conversion_table_for_instances_of_dcl_mod {ir_from,ir_to} first_free_index dcl_functions dcl_instances conversion_table icl_instances #! nr_of_dcl_functions = size dcl_functions # dcl_instances_table = conversion_table.[toInt STE_Instance] dcl_function_table = conversion_table.[toInt STE_DclFunction] new_table = { createArray nr_of_dcl_functions NoIndex & [i] = icl_index \\ icl_index <-: dcl_function_table & i <- [0..] } index_diff = first_free_index - ir_from new_table = { new_table & [i] = i + index_diff \\ i <- [ir_from .. ir_to - 1] } = build_conversion_table_for_instances 0 dcl_instances dcl_instances_table icl_instances new_table build_conversion_table_for_instances dcl_class_inst_index dcl_instances class_instances_table icl_instances new_table | dcl_class_inst_index < size class_instances_table # icl_index = class_instances_table.[dcl_class_inst_index] #! icl_instance = icl_instances.[icl_index] dcl_instance = dcl_instances.[dcl_class_inst_index] # new_table = build_conversion_table_for_instances_of_members 0 dcl_instance.ins_members icl_instance.ins_members new_table = build_conversion_table_for_instances (inc dcl_class_inst_index) dcl_instances class_instances_table icl_instances new_table = (new_table, icl_instances) build_conversion_table_for_instances_of_members mem_index dcl_members icl_members new_table | mem_index < size dcl_members # dcl_member = dcl_members.[mem_index] icl_member = icl_members.[mem_index] = build_conversion_table_for_instances_of_members (inc mem_index) dcl_members icl_members { new_table & [dcl_member.ds_index] = icl_member.ds_index } = new_table collect_specialized_functions spec_index last_index dcl_fun_types conversion_table (icl_functions, next_fun_index, heaps) | spec_index < last_index # {ft_type,ft_specials = SP_FunIndex dcl_index} = dcl_fun_types.[spec_index] icl_index = conversion_table.[dcl_index] #! icl_fun = icl_functions.[icl_index] (new_fun_def, heaps) = build_function next_fun_index icl_fun ft_type heaps (new_fun_defs, funs_index_heaps) = collect_specialized_functions (inc spec_index) last_index dcl_fun_types conversion_table (icl_functions, inc next_fun_index, heaps) = ([new_fun_def : new_fun_defs], funs_index_heaps) = ([], (icl_functions, next_fun_index, heaps)) build_function new_fun_index fun_def=:{fun_symb, fun_arity, fun_index, fun_body = CheckedBody {cb_args}, fun_info} fun_type (var_heap, type_var_heap, expr_heap) # (tb_args, var_heap) = mapSt new_free_var cb_args var_heap (app_args, expr_heap) = mapSt new_bound_var tb_args expr_heap (app_info_ptr, expr_heap) = newPtr EI_Empty expr_heap tb_rhs = App { app_symb = { symb_name = fun_symb, symb_arity = fun_arity, symb_kind = SK_Function { glob_module = cIclModIndex, glob_object = fun_index }}, app_args = app_args, app_info_ptr = app_info_ptr } = ({ fun_def & fun_index = new_fun_index, fun_body = TransformedBody {tb_args = tb_args, tb_rhs = tb_rhs}, fun_type = Yes fun_type, fun_info = { EmptyFunInfo & fi_calls = [ { fc_index = fun_index, fc_level = cGlobalScope }] }}, (var_heap, type_var_heap, expr_heap)) new_bound_var :: !FreeVar !*ExpressionHeap -> (!Expression, !*ExpressionHeap) new_bound_var {fv_name,fv_info_ptr} expr_heap # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_name = fv_name, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, expr_heap) new_free_var :: !FreeVar *VarHeap -> (!FreeVar, !*VarHeap) new_free_var fv var_heap # (fv_info_ptr, var_heap) = newPtr VI_Empty var_heap = ({ fv & fv_info_ptr = fv_info_ptr, fv_def_level = NotALevel, fv_count = 0}, var_heap) copy_instance_types :: [(Index,SymbolType)] !*{# FunDef} -> !*{# FunDef} copy_instance_types types fun_defs = foldl copy_instance_type fun_defs types copy_instance_type fun_defs (index, symbol_type) #! inst_def = fun_defs.[index] = { fun_defs & [index] = { inst_def & fun_type = Yes symbol_type }} adjust_instance_types_of_array_functions_in_std_array_icl dcl_modules class_instances fun_defs predef_symbols # ({pds_def}, predef_symbols) = predef_symbols![PD_StdArray] | pds_def == cIclModIndex #! nr_of_instances = size class_instances # ({dcl_common, dcl_conversions = Yes conversion_table}, dcl_modules) = dcl_modules![cIclModIndex] ({pds_def}, predef_symbols) = predef_symbols![PD_ArrayClass] (offset_table, _, predef_symbols) = arrayFunOffsetToPD_IndexTable dcl_common.com_member_defs predef_symbols array_class_index = conversion_table.[cClassDefs].[pds_def] (class_instances, fun_defs, predef_symbols) = iFoldSt (adjust_instance_types_of_array_functions array_class_index offset_table) 0 nr_of_instances (class_instances, fun_defs, predef_symbols) = (dcl_modules, class_instances, fun_defs, predef_symbols) = (dcl_modules, class_instances, fun_defs, predef_symbols) where adjust_instance_types_of_array_functions array_class_index offset_table inst_index (class_instances, fun_defs, predef_symbols) # ({ins_class={glob_module,glob_object={ds_index}},ins_type,ins_members}, class_instances) = class_instances![inst_index] | glob_module == cIclModIndex && ds_index == array_class_index && elemTypeIsStrict ins_type.it_types predef_symbols # fun_defs = iFoldSt (make_instance_strict ins_members offset_table) 0 (size ins_members) fun_defs = (class_instances, fun_defs, predef_symbols) = (class_instances, fun_defs, predef_symbols) make_instance_strict instances offset_table ins_offset instance_defs # {ds_index} = instances.[ins_offset] (inst_def, instance_defs) = instance_defs![ds_index] (Yes symbol_type) = inst_def.fun_type = { instance_defs & [ds_index] = { inst_def & fun_type = Yes (makeElemTypeOfArrayFunctionStrict symbol_type ins_offset offset_table) } } // MW.. get_upper_limits icl_common=:{com_type_defs, com_cons_defs, com_selector_defs, com_class_defs ,com_member_defs, com_instance_defs} # (size_type_defs, com_type_defs) = usize com_type_defs (size_cons_defs, com_cons_defs) = usize com_cons_defs (size_selector_defs, com_selector_defs) = usize com_selector_defs (size_class_defs, com_class_defs) = usize com_class_defs (size_member_defs, com_member_defs) = usize com_member_defs (size_instance_defs, com_instance_defs) = usize com_instance_defs upper_limits = { createArray cConversionTableSize 0 & [cTypeDefs]=size_type_defs , [cConstructorDefs]=size_cons_defs , [cSelectorDefs]=size_selector_defs , [cClassDefs]=size_class_defs , [cMemberDefs]=size_member_defs , [cInstanceDefs]=size_instance_defs } = (upper_limits, { com_type_defs =com_type_defs , com_cons_defs =com_cons_defs , com_selector_defs =com_selector_defs , com_class_defs =com_class_defs , com_member_defs =com_member_defs , com_instance_defs =com_instance_defs }) // ..MW // MW.. add_defs_only_in_main_dcl defs_only_in_main_dcl {dcl_common} icl_common = { icl_common & com_type_defs = append_array_and_list icl_common.com_type_defs [ dcl_common.com_type_defs.[dcl_index] \\ {dcl_index} <- defs_only_in_main_dcl.[cTypeDefs]] , com_cons_defs = append_array_and_list icl_common.com_cons_defs [ dcl_common.com_cons_defs.[dcl_index] \\ {dcl_index} <- defs_only_in_main_dcl.[cConstructorDefs]] , com_selector_defs = append_array_and_list icl_common.com_selector_defs [ dcl_common.com_selector_defs.[dcl_index] \\ {dcl_index} <- defs_only_in_main_dcl.[cSelectorDefs]] , com_class_defs = append_array_and_list icl_common.com_class_defs [ dcl_common.com_class_defs.[dcl_index] \\ {dcl_index} <- defs_only_in_main_dcl.[cClassDefs]] , com_member_defs = append_array_and_list icl_common.com_member_defs [ dcl_common.com_member_defs.[dcl_index] \\ {dcl_index} <- defs_only_in_main_dcl.[cMemberDefs]] } where append_array_and_list a [] = a append_array_and_list a l = { el \\ el <- [el \\ el<-:a]++l} // ..MW arrayFunOffsetToPD_IndexTable member_defs predef_symbols # nr_of_array_functions = size member_defs = iFoldSt offset_to_PD_index PD_CreateArrayFun (PD_CreateArrayFun + nr_of_array_functions) (createArray nr_of_array_functions NoIndex, member_defs, predef_symbols) where offset_to_PD_index pd_index (table, member_defs, predef_symbols) # ({pds_def}, predef_symbols) = predef_symbols![pd_index] #! {me_offset} = member_defs.[pds_def] = ({ table & [me_offset] = pd_index }, member_defs, predef_symbols) elemTypeIsStrict [TA {type_index={glob_object,glob_module}} _ : _] predef_symbols = glob_module == predef_symbols.[PD_PredefinedModule].pds_def && (glob_object == predef_symbols.[PD_StrictArrayType].pds_def || glob_object == predef_symbols.[PD_UnboxedArrayType].pds_def) makeElemTypeOfArrayFunctionStrict st=:{st_args,st_result} me_offset offset_table # array_fun_kind = offset_table.[me_offset] | array_fun_kind == PD_UnqArraySelectFun # (TA tuple [elem : res_array]) = st_result.at_type = { st & st_result = { st_result & at_type = TA tuple [{ elem & at_annotation = AN_Strict } : res_array]}} | array_fun_kind == PD_ArrayUpdateFun # [array, index, elem: _] = st_args = { st & st_args = [array, index, { elem & at_annotation = AN_Strict }] } | array_fun_kind == PD_CreateArrayFun # [array, elem: _] = st_args = { st & st_args = [array, { elem & at_annotation = AN_Strict }] } | array_fun_kind == PD_ArrayReplaceFun # [arg_array, index, elem: _] = st_args (TA tuple [elem : res_array]) = st_result.at_type = { st & st_args = [arg_array, index, { elem & at_annotation = AN_Strict }], st_result = { st_result & at_type = TA tuple [{ elem & at_annotation = AN_Strict } : res_array]}} = st :: ImportInfo = { ii_modules :: !.{# DclModule} , ii_funs_and_macros :: !.{# FunDef} , ii_next_num :: !Int , ii_deps :: ![SymbolPtr] } checkImports :: ![ParsedImport] !*ImportInfo !*Heaps !*CheckState -> (!Int, !*ImportInfo, !*Heaps, !*CheckState) checkImports [] iinfo=:{ii_modules,ii_deps} heaps cs #! mod_num = size ii_modules = (mod_num, iinfo, heaps, cs) checkImports [ {import_module = {id_info}}: mods ] iinfo heaps cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # (min_mod_num1, iinfo, heaps, cs) = checkImport id_info entry iinfo heaps cs (min_mod_num2, iinfo, heaps, cs) = checkImports mods iinfo heaps cs = (min min_mod_num1 min_mod_num2, iinfo, heaps, cs) checkImport :: SymbolPtr SymbolTableEntry *ImportInfo *Heaps *CheckState -> *(Int,*ImportInfo,*Heaps,*CheckState); // MW++ checkImport module_id_info entry=:{ste_kind = STE_OpenModule mod_num _} iinfo heaps cs = (mod_num, iinfo, heaps, cs) checkImport module_id_info entry=:{ste_kind = STE_ClosedModule} iinfo=:{ii_modules} heaps cs #! mod_num = size ii_modules = (mod_num, iinfo, heaps, cs) checkImport module_id_info entry=:{ste_kind = STE_Module mod, ste_index} iinfo=:{ii_next_num,ii_deps} heaps cs=:{cs_symbol_table} # entry = { entry & ste_kind = STE_OpenModule ii_next_num mod} cs = { cs & cs_symbol_table = cs_symbol_table <:= (module_id_info,entry) } iinfo = { iinfo & ii_next_num = inc ii_next_num, ii_deps = [module_id_info : ii_deps] } (min_mod_num, iinfo, heaps, cs) = checkImports mod.mod_imports iinfo heaps cs | ii_next_num <= min_mod_num # {ii_deps,ii_modules,ii_funs_and_macros} = iinfo (ii_deps, ii_modules, ii_funs_and_macros, heaps, cs) = check_component module_id_info ii_deps ii_modules ii_funs_and_macros heaps cs #! max_mod_num = size ii_modules = (max_mod_num, { iinfo & ii_deps = ii_deps, ii_modules = ii_modules, ii_funs_and_macros = ii_funs_and_macros }, heaps, cs) = (min_mod_num, iinfo, heaps, cs) where check_component lowest_mod_info [mod_info : ds] modules macro_and_fun_defs heaps cs=:{cs_symbol_table} #! entry = sreadPtr mod_info cs_symbol_table # {ste_kind=STE_OpenModule _ mod,ste_index} = entry (modules, macro_and_fun_defs, heaps, cs) = checkDclModule mod ste_index modules macro_and_fun_defs heaps cs cs = { cs & cs_symbol_table = cs.cs_symbol_table <:= (mod_info, { entry & ste_kind = STE_ClosedModule })} | lowest_mod_info == mod_info = (ds, modules, macro_and_fun_defs, heaps, cs) // MW was = check_component mod_info ds modules macro_and_fun_defs heaps cs = check_component lowest_mod_info ds modules macro_and_fun_defs heaps cs initialDclModule ({mod_name, mod_defs=mod_defs=:{def_funtypes,def_macros}, mod_type},all_defs) var_heap # (dcl_common, var_heap) = createCommonDefinitions mod_defs var_heap = ({ dcl_name = mod_name , dcl_functions = { function \\ function <- mod_defs.def_funtypes } , dcl_macros = def_macros , dcl_instances = { ir_from = 0, ir_to = 0 } , dcl_class_specials = { ir_from = 0, ir_to = 0 } , dcl_specials = { ir_from = 0, ir_to = 0 } , dcl_common = dcl_common , dcl_declared = { dcls_import = [] , dcls_local = all_defs , dcls_explicit = [] // MW++ } , dcl_conversions = No , dcl_is_system = case mod_type of MK_System -> True _ -> False }, var_heap) // MW moved retrieveAndRemoveImportsFromSymbolTable checkDclModule {mod_name,mod_imports,mod_defs} mod_index modules icl_functions heaps=:{hp_var_heap, hp_type_heaps} cs #! dcl_mod = modules.[mod_index] # dcl_defined = dcl_mod.dcl_declared.dcls_local // createCommonDefinitions only converts lists into arrays (dcl_common, hp_var_heap) = createCommonDefinitions mod_defs hp_var_heap dcl_macros = mod_defs.def_macros (imports, modules, cs) = collect_imported_symbols mod_imports [] modules cs // imports :: [(Index,Declarations)] # cs = add_imported_symbols_to_symbol_table imports cs // cs = addImportedSymbolsToSymbolTable imports cs cs = addGlobalDefinitionsToSymbolTable dcl_defined cs nr_of_dcl_functions = size dcl_mod.dcl_functions (upper_limits, dcl_common) = get_upper_limits dcl_common // MW++ (dcl_common, modules, hp_type_heaps, hp_var_heap, cs) // MW was = checkCommonDefinitions cIsADclModule mod_index dcl_common modules hp_type_heaps hp_var_heap cs = checkCommonDefinitions cIsADclModule mod_index upper_limits dcl_common modules hp_type_heaps hp_var_heap cs (memb_inst_defs, nr_of_dcl_functions_and_instances, rev_spec_class_inst, dcl_common, modules, hp_type_heaps, hp_var_heap, cs) = determineTypesOfInstances nr_of_dcl_functions mod_index dcl_common modules hp_type_heaps hp_var_heap cs (nr_of_dcl_funs_insts_and_specs, rev_function_list, rev_special_defs, com_type_defs, com_class_defs, modules, heaps, cs) = checkDclFunctions mod_index nr_of_dcl_functions_and_instances mod_defs.def_funtypes dcl_common.com_type_defs dcl_common.com_class_defs modules { heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap } cs (nr_of_dcl_funs_insts_and_specs, new_class_instances, rev_special_defs, all_spec_types, heaps, cs_error) = checkSpecialsOfInstances mod_index nr_of_dcl_functions rev_spec_class_inst nr_of_dcl_funs_insts_and_specs [] rev_special_defs { mem \\ mem <- memb_inst_defs } { [] \\ mem <- memb_inst_defs } heaps cs.cs_error dcl_functions = { function \\ function <- revAppend rev_function_list ( [ { mem_inst & ft_specials = if (isEmpty spec_types) SP_None (SP_ContextTypes spec_types) } \\ mem_inst <- memb_inst_defs & spec_types <-: all_spec_types ] ++ reverse rev_special_defs) } e_info = { ef_type_defs = com_type_defs, ef_selector_defs = dcl_common.com_selector_defs, ef_class_defs = com_class_defs, ef_cons_defs = dcl_common.com_cons_defs, ef_member_defs = dcl_common.com_member_defs, ef_modules = modules } (icl_functions, e_info, heaps, cs) = checkMacros mod_index dcl_macros icl_functions e_info heaps { cs & cs_error = cs_error } com_instance_defs = dcl_common.com_instance_defs com_instance_defs = { inst_def \\ inst_def <- [ inst_def \\ inst_def <-: com_instance_defs ] ++ new_class_instances } (ef_member_defs, com_instance_defs, dcl_functions, cs) = adjust_predefined_symbols mod_index e_info.ef_member_defs com_instance_defs dcl_functions cs first_special_class_index = size com_instance_defs last_special_class_index = first_special_class_index + length new_class_instances dcl_common = { dcl_common & com_type_defs = e_info.ef_type_defs, com_selector_defs = e_info.ef_selector_defs, com_class_defs = e_info.ef_class_defs, com_instance_defs = com_instance_defs, com_cons_defs = e_info.ef_cons_defs, com_member_defs = ef_member_defs } (dcl_imported, cs_symbol_table) = retrieveAndRemoveImportsFromSymbolTable imports [] cs.cs_symbol_table cs_symbol_table = removeDeclarationsFromSymbolTable dcl_defined cModuleScope cs_symbol_table dcls_explicit = flatten [dcls_explicit \\ (_,{dcls_explicit})<-imports] //MW++ /* MW was dcl_mod = { dcl_mod & dcl_declared = { dcl_mod.dcl_declared & dcls_import = dcl_imported }, dcl_common = dcl_common, dcl_functions = dcl_functions, dcl_instances = { ir_from = nr_of_dcl_functions, ir_to = nr_of_dcl_functions_and_instances }, dcl_specials = { ir_from = nr_of_dcl_functions_and_instances, ir_to = nr_of_dcl_funs_insts_and_specs }, dcl_class_specials = { ir_from = first_special_class_index, ir_to = last_special_class_index }} */ dcl_mod = { dcl_mod & dcl_declared = { dcl_mod.dcl_declared & dcls_import = dcl_imported, dcls_explicit = dcls_explicit }, dcl_common = dcl_common, dcl_functions = dcl_functions, dcl_instances = { ir_from = nr_of_dcl_functions, ir_to = nr_of_dcl_functions_and_instances }, dcl_specials = { ir_from = nr_of_dcl_functions_and_instances, ir_to = nr_of_dcl_funs_insts_and_specs }, dcl_class_specials = { ir_from = first_special_class_index, ir_to = last_special_class_index }} = ({ e_info.ef_modules & [ mod_index ] = dcl_mod }, icl_functions, heaps, { cs & cs_symbol_table = cs_symbol_table }) where /* MW was collect_imported_symbols [{import_module={id_info}} : mods ] all_decls modules cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # (all_decls, modules, cs) = collect_declarations_of_module id_info entry all_decls modules cs = collect_imported_symbols mods all_decls modules cs */ collect_imported_symbols [{import_module={id_info},import_symbols,import_file_position} : mods ] all_decls modules cs=:{cs_symbol_table} #! entry = sreadPtr id_info cs_symbol_table # (decls_of_imported_module, modules, cs) = collect_declarations_of_module id_info entry [] modules cs (imported_decls, modules, cs) = possibly_filter_decls import_symbols decls_of_imported_module import_file_position modules cs = collect_imported_symbols mods (imported_decls++all_decls) modules cs collect_imported_symbols [] all_decls modules cs = (all_decls, modules, cs) collect_declarations_of_module module_id_info entry=:{ste_index, ste_kind= old_kind=:STE_OpenModule mod_num {mod_imports} } all_decls modules cs=:{cs_symbol_table} # cs = { cs & cs_symbol_table = cs_symbol_table <:= (module_id_info, { entry & ste_kind = STE_LockedModule })} (imported_decls, modules, cs) = collect_imported_symbols mod_imports [] modules cs #! dcl_mod = modules.[ste_index] # (declared, cs) = determine_declared_symbols ste_index dcl_mod.dcl_declared.dcls_local imported_decls cs // MW was = ([(ste_index, declared) : all_decls], modules, { cs & cs_symbol_table = cs.cs_symbol_table <:= (module_id_info, { entry & ste_kind = old_kind })}) = ( [(ste_index, declared) : all_decls] , modules , { cs & cs_symbol_table = cs.cs_symbol_table <:= (module_id_info, { entry & ste_kind = old_kind })} ) collect_declarations_of_module module_id_info entry=:{ste_index, ste_kind= STE_ClosedModule} all_decls modules cs #! {dcl_declared} = modules.[ste_index] = ([(ste_index, dcl_declared) : all_decls], modules, cs) collect_declarations_of_module module_id_info entry=:{ste_kind= STE_LockedModule} all_decls modules cs = (all_decls, modules, cs) determine_declared_symbols mod_index definitions imported_decls cs # cs = addGlobalDefinitionsToSymbolTable definitions (add_imported_symbols_to_symbol_table imported_decls cs) (dcls_import, cs_symbol_table) = retrieveAndRemoveImportsFromSymbolTable imported_decls [] cs.cs_symbol_table cs_symbol_table = removeDeclarationsFromSymbolTable definitions cModuleScope cs_symbol_table = ( {dcls_import = dcls_import, dcls_local = definitions, dcls_explicit = []}, { cs & cs_symbol_table = cs_symbol_table }) add_imported_symbols_to_symbol_table [(mod_index, {dcls_import,dcls_local}) : imports] cs = add_imported_symbols_to_symbol_table imports (addDeclaredSymbolsToSymbolTable cIsADclModule mod_index dcls_local dcls_import cs) add_imported_symbols_to_symbol_table [] cs = cs adjust_predefined_symbols mod_index class_members class_instances fun_types cs=:{cs_predef_symbols} #! pre_mod = cs_predef_symbols.[PD_StdArray] | pre_mod.pds_def == mod_index # cs = cs <=< adjust_predef_symbols PD_CreateArrayFun PD_UnqArraySizeFun mod_index STE_Member <=< adjust_predef_symbol PD_ArrayClass mod_index STE_Class (class_members, class_instances, fun_types, cs_predef_symbols) = adjust_instance_types_of_array_functions_in_std_array_dcl mod_index class_members class_instances fun_types cs.cs_predef_symbols = (class_members, class_instances, fun_types, { cs & cs_predef_symbols = cs_predef_symbols }) #! pre_mod = cs_predef_symbols.[PD_PredefinedModule] | pre_mod.pds_def == mod_index = (class_members, class_instances, fun_types, cs <=< adjust_predef_symbols PD_ListType PD_UnboxedArrayType mod_index STE_Type <=< adjust_predef_symbols PD_ConsSymbol PD_Arity32TupleSymbol mod_index STE_Constructor <=< adjust_predef_symbol PD_TypeCodeClass mod_index STE_Class <=< adjust_predef_symbol PD_TypeCodeMember mod_index STE_Member) #! pre_mod = cs_predef_symbols.[PD_StdBool] | pre_mod.pds_def == mod_index = (class_members, class_instances, fun_types, cs <=< adjust_predef_symbol PD_AndOp mod_index STE_DclFunction <=< adjust_predef_symbol PD_OrOp mod_index STE_DclFunction) #! pre_mod = cs_predef_symbols.[PD_StdDynamics] | pre_mod.pds_def == mod_index = (class_members, class_instances, fun_types, cs <=< adjust_predef_symbol PD_TypeObjectType mod_index STE_Type <=< adjust_predef_symbol PD_TypeConsSymbol mod_index STE_Constructor <=< adjust_predef_symbol PD_variablePlaceholder mod_index STE_Constructor <=< adjust_predef_symbol PD_unify mod_index STE_DclFunction <=< adjust_predef_symbol PD_undo_indirections mod_index STE_DclFunction) = (class_members, class_instances, fun_types, cs) where adjust_predef_symbols next_symb last_symb mod_index symb_kind cs=:{cs_predef_symbols, cs_symbol_table, cs_error} | next_symb > last_symb = cs = cs <=< adjust_predef_symbol next_symb mod_index symb_kind <=< adjust_predef_symbols (inc next_symb) last_symb mod_index symb_kind adjust_predef_symbol predef_index mod_index symb_kind cs=:{cs_predef_symbols,cs_symbol_table,cs_error} #! pre_symb = cs_predef_symbols.[predef_index] # pre_id = pre_symb.pds_ident #! pre_index = determine_index_of_symbol (sreadPtr pre_id.id_info cs_symbol_table) symb_kind | pre_index <> NoIndex = { cs & cs_predef_symbols = {cs_predef_symbols & [predef_index] = { pre_symb & pds_def = pre_index, pds_module = mod_index }}} = { cs & cs_error = checkError pre_id " function not defined" cs_error } where determine_index_of_symbol {ste_kind, ste_index} symb_kind | ste_kind == symb_kind = ste_index = NoIndex adjust_instance_types_of_array_functions_in_std_array_dcl array_mod_index class_members class_instances fun_types predef_symbols #! nr_of_instances = size class_instances # ({pds_def}, predef_symbols) = predef_symbols![PD_ArrayClass] (offset_table, class_members, predef_symbols) = arrayFunOffsetToPD_IndexTable class_members predef_symbols (class_instances, fun_types, predef_symbols) = iFoldSt (adjust_instance_types_of_array_functions array_mod_index pds_def offset_table) 0 nr_of_instances (class_instances, fun_types, predef_symbols) = (class_members, class_instances, fun_types, predef_symbols) where adjust_instance_types_of_array_functions array_mod_index array_class_index offset_table inst_index (class_instances, fun_types, predef_symbols) # ({ins_class={glob_module,glob_object={ds_index}},ins_type,ins_members}, class_instances) = class_instances![inst_index] | glob_module == array_mod_index && ds_index == array_class_index && elemTypeIsStrict ins_type.it_types predef_symbols # fun_types = iFoldSt (make_instance_strict ins_members offset_table) 0 (size ins_members) fun_types = (class_instances, fun_types, predef_symbols) = (class_instances, fun_types, predef_symbols) make_instance_strict instances offset_table ins_offset instance_defs # {ds_index} = instances.[ins_offset] (inst_def, instance_defs) = instance_defs![ds_index] (Yes symbol_type) = inst_def.ft_type = { instance_defs & [ds_index] = { inst_def & ft_type = makeElemTypeOfArrayFunctionStrict inst_def.ft_type ins_offset offset_table } } // MW moved functions NewEntry symbol_table symb_ptr def_kind def_index level previous :== symbol_table <:= (symb_ptr,{ ste_kind = def_kind, ste_index = def_index, ste_def_level = level, ste_previous = previous }) // MW moved function addImportsToSymbolTable :: ![ParsedImport] ![(!Declaration, !LineNr)] !*{# DclModule} !*CheckState -> (![(!Declaration, !LineNr)], !*{# DclModule}, !*CheckState) addImportsToSymbolTable [{import_module={id_info},import_symbols, import_file_position} : mods ] explicit_akku modules cs=:{cs_symbol_table} #! {ste_index} = sreadPtr id_info cs_symbol_table #! {dcl_declared=decls_of_imported_module} = modules.[ste_index] (imported_decls, modules, cs) = possibly_filter_decls import_symbols [(ste_index, decls_of_imported_module)] import_file_position modules cs | isEmpty imported_decls = addImportsToSymbolTable mods explicit_akku modules cs #! (_,{dcls_import,dcls_local,dcls_explicit}) = hd imported_decls = addImportsToSymbolTable mods (dcls_explicit++explicit_akku) modules (addDeclaredSymbolsToSymbolTable cIsNotADclModule ste_index dcls_local dcls_import cs) addImportsToSymbolTable [] explicit_akku modules cs = (explicit_akku, modules, cs) // MW moved functions file_and_status {ea_file,ea_ok} = (ea_file, ea_ok) instance <<< FunCall where (<<<) file {fc_index} = file <<< fc_index instance <<< Priority where (<<<) file (Prio ass prio) = file <<< "##" <<< prio <<< ass <<< "##" (<<<) file NoPrio = file <<< "#" instance <<< Assoc where (<<<) file LeftAssoc = file <<< 'L' (<<<) file RightAssoc = file <<< 'R' (<<<) file _ = file instance <<< DefinedSymbol where (<<<) file { ds_index, ds_ident } = file <<< ds_ident <<< '.' <<< ds_index instance <<< FreeVar where (<<<) file { fv_name } = file <<< fv_name instance <<< FieldSymbol where (<<<) file { fs_var } = file <<< fs_var instance <<< Declarations where (<<<) file { dcls_import, dcls_local } = file <<< "I:" <<< dcls_import <<< "L:" <<< dcls_local instance <<< Specials where (<<<) file (SP_ParsedSubstitutions _) = file <<< "SP_ParsedSubstitutions" (<<<) file (SP_Substitutions substs) = file <<< "SP_Substitutions " <<< substs (<<<) file (SP_ContextTypes specials) = file <<< "SP_ContextTypes " <<< specials (<<<) file (SP_FunIndex _) = file <<< "SP_ParsedSubstitutions" (<<<) file SP_None = file <<< "SP_None" instance <<< Special where (<<<) file {spec_types} = file <<< spec_types instance <<< SpecialSubstitution where (<<<) file {ss_environ} = file <<< ss_environ instance <<< Declaration where (<<<) file { dcl_ident } = file <<< dcl_ident instance <<< Ptr a where (<<<) file ptr = file <<< "[[" <<< ptrToInt ptr <<< "]]" instance <<< LocalDefs where (<<<) file (CollectedLocalDefs { loc_functions={ir_from,ir_to} }) = file <<< ir_from <<< '-' <<< ir_to retrieveGlobalDefinition :: !SymbolTableEntry !STE_Kind !Index -> (!Index, !Index) retrieveGlobalDefinition {ste_kind = STE_Imported kind dcl_index, ste_def_level, ste_index} requ_kind mod_index | kind == requ_kind = (ste_index, dcl_index) = (NotFound, mod_index) retrieveGlobalDefinition {ste_kind,ste_def_level,ste_index} requ_kind mod_index | ste_kind == requ_kind && ste_def_level == cGlobalScope = (ste_index, mod_index) = (NotFound, mod_index)