/* module owner: Diederik van Arkel */ implementation module trans import StdEnv import syntax, transform, checksupport, StdCompare, check, utilities, unitype, typesupport, type import classify, partition SwitchCaseFusion fuse dont_fuse :== fuse SwitchGeneratedFusion fuse dont_fuse :== fuse SwitchFunctionFusion fuse dont_fuse :== fuse SwitchConstructorFusion fuse dont_fuse :== dont_fuse SwitchRnfConstructorFusion rnf linear :== rnf SwitchCurriedFusion fuse xtra dont_fuse :== fuse SwitchExtraCurriedFusion fuse macro :== fuse//(fuse && macro)//fuse SwitchTrivialFusion fuse dont_fuse :== fuse SwitchUnusedFusion fuse dont_fuse :== fuse SwitchReanalyseFunction rean dont_rean :== dont_rean SwitchTransformConstants tran dont_tran :== tran SwitchSpecialFusion fuse dont_fuse :== fuse SwitchArityChecks check dont_check :== check SwitchNWayFusion fuse dont_fuse :== dont_fuse SwitchDirectConsumerUnfold unfold dont :== dont SwitchAutoFoldCaseInCase fold dont :== fold SwitchAutoFoldAppInCase fold dont :== fold SwitchAlwaysIntroduceCaseFunction yes no :== no//yes SwitchNonRecFusion fuse dont_fuse :== dont_fuse SwitchHOFusion fuse dont_fuse :== fuse SwitchHOFusion` fuse dont_fuse :== fuse SwitchStrictPossiblyAddLet strict lazy :== lazy//strict //import RWSDebug (-!->) infix (-!->) a b :== a // ---> b (<-!-) infix (<-!-) a b :== a // <--- b fromYes (Yes x) = x is_SK_Function_or_SK_LocalMacroFunction (SK_Function _) = True is_SK_Function_or_SK_LocalMacroFunction (SK_LocalMacroFunction _) = True is_SK_Function_or_SK_LocalMacroFunction _ = False undeff :== -1 empty_atype = { at_attribute = TA_Multi, at_type = TE } get_producer_symbol (PR_Curried symbol arity) = (symbol,arity) get_producer_symbol (PR_Function symbol arity _) = (symbol,arity) get_producer_symbol (PR_GeneratedFunction symbol arity _) = (symbol,arity) get_producer_symbol (PR_Constructor symbol arity _) = (symbol,arity) // Extended variable info accessors... readVarInfo :: VarInfoPtr *VarHeap -> (VarInfo, !*VarHeap) readVarInfo var_info_ptr var_heap # (var_info, var_heap) = readPtr var_info_ptr var_heap = case var_info of VI_Extended _ original_var_info -> (original_var_info, var_heap) _ -> (var_info, var_heap) readExtendedVarInfo :: VarInfoPtr *VarHeap -> (ExtendedVarInfo, !*VarHeap) readExtendedVarInfo var_info_ptr var_heap # (var_info, var_heap) = readPtr var_info_ptr var_heap = case var_info of VI_Extended extensions _ -> (extensions, var_heap) _ -> abort "sanity check 'readExtendedVarInfo' failed in module trans.\n" writeVarInfo :: VarInfoPtr VarInfo *VarHeap -> *VarHeap writeVarInfo var_info_ptr new_var_info var_heap # (old_var_info, var_heap) = readPtr var_info_ptr var_heap = case old_var_info of VI_Extended extensions _ -> writePtr var_info_ptr (VI_Extended extensions new_var_info) var_heap _ -> writePtr var_info_ptr new_var_info var_heap setExtendedVarInfo :: !VarInfoPtr !ExtendedVarInfo !*VarHeap -> *VarHeap setExtendedVarInfo var_info_ptr extension var_heap # (old_var_info, var_heap) = readPtr var_info_ptr var_heap = case old_var_info of VI_Extended _ original_var_info -> writePtr var_info_ptr (VI_Extended extension original_var_info) var_heap _ -> writePtr var_info_ptr (VI_Extended extension old_var_info) var_heap // Extended expression info accessors... readExprInfo :: !ExprInfoPtr !*ExpressionHeap -> (!ExprInfo,!*ExpressionHeap) readExprInfo expr_info_ptr symbol_heap # (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap = case expr_info of EI_Extended _ ei -> (ei, symbol_heap) _ -> (expr_info, symbol_heap) writeExprInfo :: !ExprInfoPtr !ExprInfo !*ExpressionHeap -> *ExpressionHeap writeExprInfo expr_info_ptr new_expr_info symbol_heap # (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap = case expr_info of EI_Extended extensions _ -> writePtr expr_info_ptr (EI_Extended extensions new_expr_info) symbol_heap _ -> writePtr expr_info_ptr new_expr_info symbol_heap app_EEI_ActiveCase transformer expr_info_ptr expr_heap # (expr_info, expr_heap) = readPtr expr_info_ptr expr_heap = case expr_info of (EI_Extended (EEI_ActiveCase aci) original_expr_info) -> writePtr expr_info_ptr (EI_Extended (EEI_ActiveCase (transformer aci)) original_expr_info) expr_heap _ -> expr_heap set_aci_free_vars_info_case unbound_variables case_info_ptr expr_heap = app_EEI_ActiveCase (\aci -> { aci & aci_free_vars=Yes unbound_variables }) case_info_ptr expr_heap remove_aci_free_vars_info case_info_ptr expr_heap = app_EEI_ActiveCase (\aci->{aci & aci_free_vars = No }) case_info_ptr expr_heap cleanup_attributes expr_info_ptr symbol_heap # (expr_info, symbol_heap) = readPtr expr_info_ptr symbol_heap = case expr_info of EI_Extended _ expr_info -> writePtr expr_info_ptr expr_info symbol_heap _ -> symbol_heap /* * TRANSFORM */ :: *TransformInfo = { ti_fun_defs :: !*{# FunDef} , ti_instances :: !*{! InstanceInfo } , ti_cons_args :: !*{! ConsClasses} , ti_new_functions :: ![FunctionInfoPtr] , ti_fun_heap :: !*FunctionHeap , ti_var_heap :: !*VarHeap , ti_symbol_heap :: !*ExpressionHeap , ti_type_heaps :: !*TypeHeaps , ti_type_def_infos :: !*TypeDefInfos , ti_next_fun_nr :: !Index , ti_cleanup_info :: !CleanupInfo , ti_recursion_introduced :: !Optional Index // , ti_trace :: !Bool // XXX just for tracing , ti_error_file :: !*File , ti_predef_symbols :: !*PredefinedSymbols } :: ReadOnlyTI = { ro_imported_funs :: !{# {# FunType} } , ro_common_defs :: !{# CommonDefs } // the following four are used when possibly generating functions for cases... , ro_root_case_mode :: !RootCaseMode , ro_fun_root :: !SymbIdent // original function , ro_fun_case :: !SymbIdent // original function or possibly generated case , ro_fun_args :: ![FreeVar] // args of above , ro_fun_vars :: ![FreeVar] // strict variables , ro_fun_geni :: !(!Int,!Int) , ro_fun_orig :: !SymbIdent // original consumer , ro_main_dcl_module_n :: !Int , ro_transform_fusion :: !Bool // fusion switch , ro_stdStrictLists_module_n :: !Int } :: RootCaseMode = NotRootCase | RootCase | RootCaseOfZombie neverMatchingCase (Yes ident) # ident = ident -!-> ("neverMatchingCase",ident) = FailExpr ident neverMatchingCase _ # ident = {id_name = "neverMatchingCase", id_info = nilPtr} -!-> "neverMatchingCase without ident\n" = FailExpr ident /* = Case { case_expr = EE, case_guards = NoPattern, case_default = No, case_ident = ident, case_info_ptr = nilPtr, // RWS ... case_explicit = False, // case_explicit = True, // DvA better? // ... RWS case_default_pos = NoPos } */ class transform a :: !a !ReadOnlyTI !*TransformInfo -> (!a, !*TransformInfo) instance transform Expression where transform expr=:(App app=:{app_symb,app_args}) ro ti # (app_args, ti) = transform app_args ro ti = transformApplication { app & app_args = app_args } [] ro ti transform appl_expr=:(expr @ exprs) ro ti # (expr, ti) = transform expr ro ti (exprs, ti) = transform exprs ro ti = case expr of App app -> transformApplication app exprs ro ti _ -> (expr @ exprs, ti) transform (Let lad=:{let_strict_binds, let_lazy_binds, let_expr}) ro ti # ti = store_type_info_of_bindings_in_heap lad ti (let_strict_binds, ti) = transform let_strict_binds ro ti (let_lazy_binds, ti) = transform let_lazy_binds ro ti (let_expr, ti) = transform let_expr ro ti lad = { lad & let_lazy_binds = let_lazy_binds, let_strict_binds = let_strict_binds, let_expr = let_expr} // ti = check_type_info lad ti = (Let lad, ti) where store_type_info_of_bindings_in_heap {let_strict_binds, let_lazy_binds,let_info_ptr} ti # let_binds = let_strict_binds ++ let_lazy_binds # (EI_LetType var_types, ti_symbol_heap) = readExprInfo let_info_ptr ti.ti_symbol_heap ti_var_heap = foldSt store_type_info_let_bind (zip2 var_types let_binds) ti.ti_var_heap // ---> ("store_type_info_of_bindings_in_heap",let_strict_binds,let_lazy_binds,var_types) = { ti & ti_symbol_heap = ti_symbol_heap, ti_var_heap = ti_var_heap } store_type_info_let_bind (var_type, {lb_dst={fv_info_ptr}}) var_heap = setExtendedVarInfo fv_info_ptr (EVI_VarType var_type) var_heap check_type_info {let_strict_binds,let_lazy_binds,let_info_ptr} ti # (EI_LetType var_types, ti_symbol_heap) = readExprInfo let_info_ptr ti.ti_symbol_heap = { ti & ti_symbol_heap = ti_symbol_heap } // ---> ("check_type_info_of_bindings_in_heap",let_strict_binds,let_lazy_binds,var_types) transform (Case kees) ro ti # ti = store_type_info_of_patterns_in_heap kees ti # (res,ti) = transformCase kees ro ti = (res,ti) // ---> ("transform (Case kees)",Case kees,res) where store_type_info_of_patterns_in_heap {case_guards,case_info_ptr} ti = case case_guards of AlgebraicPatterns _ patterns # (EI_CaseType {ct_cons_types},ti_symbol_heap) = readExprInfo case_info_ptr ti.ti_symbol_heap ti_var_heap = foldSt store_type_info_of_alg_pattern (zip2 ct_cons_types patterns) ti.ti_var_heap -> { ti & ti_symbol_heap = ti_symbol_heap, ti_var_heap = ti_var_heap } BasicPatterns _ _ -> ti // no variables occur OverloadedListPatterns _ _ patterns # (EI_CaseType {ct_cons_types},ti_symbol_heap) = readExprInfo case_info_ptr ti.ti_symbol_heap ti_var_heap = foldSt store_type_info_of_alg_pattern (zip2 ct_cons_types patterns) ti.ti_var_heap -> { ti & ti_symbol_heap = ti_symbol_heap, ti_var_heap = ti_var_heap } NoPattern -> ti store_type_info_of_alg_pattern (var_types,{ap_vars}) var_heap = foldSt store_type_info_of_pattern_var (zip2 var_types ap_vars) var_heap store_type_info_of_pattern_var (var_type, {fv_info_ptr}) var_heap = setExtendedVarInfo fv_info_ptr (EVI_VarType var_type) var_heap transform (Selection opt_type expr selectors) ro ti # (expr, ti) = transform expr ro ti = transformSelection opt_type selectors expr ro ti transform (Update expr1 selectors expr2) ro ti # (expr1,ti) = transform expr1 ro ti # (selectors,ti) = transform_expressions_in_selectors selectors ti with transform_expressions_in_selectors [selection=:RecordSelection _ _ : selections] ti # (selections,ti) = transform_expressions_in_selectors selections ti = ([selection:selections],ti) transform_expressions_in_selectors [ArraySelection ds ep expr : selections] ti # (expr,ti) = transform expr ro ti # (selections,ti) = transform_expressions_in_selectors selections ti = ([ArraySelection ds ep expr:selections],ti) transform_expressions_in_selectors [DictionarySelection bv dictionary_selections ep expr : selections] ti # (expr,ti) = transform expr ro ti # (dictionary_selections,ti) = transform_expressions_in_selectors dictionary_selections ti # (selections,ti) = transform_expressions_in_selectors selections ti = ([DictionarySelection bv dictionary_selections ep expr:selections],ti) transform_expressions_in_selectors [] ti = ([],ti) # (expr2,ti) = transform expr2 ro ti = (Update expr1 selectors expr2,ti) transform (RecordUpdate cons_symbol expr exprs) ro ti # (expr,ti) = transform expr ro ti # (exprs,ti) = transform_fields exprs ro ti =(RecordUpdate cons_symbol expr exprs,ti) where transform_fields [] ro ti = ([],ti) transform_fields [bind=:{bind_src} : fields] ro ti # (bind_src,ti) = transform bind_src ro ti # (fields,ti) = transform_fields fields ro ti = ([{bind & bind_src=bind_src} : fields],ti) transform (TupleSelect a1 arg_nr expr) ro ti # (expr,ti) = transform expr ro ti = (TupleSelect a1 arg_nr expr,ti) transform (MatchExpr a1 expr) ro ti # (expr,ti) = transform expr ro ti = (MatchExpr a1 expr,ti) transform (DynamicExpr dynamic_expr) ro ti # (dynamic_expr, ti) = transform dynamic_expr ro ti = (DynamicExpr dynamic_expr, ti) transform expr ro ti = (expr, ti) instance transform DynamicExpr where transform dyn=:{dyn_expr} ro ti # (dyn_expr, ti) = transform dyn_expr ro ti = ({dyn & dyn_expr = dyn_expr}, ti) transformCase this_case=:{case_expr,case_guards,case_default,case_ident,case_info_ptr} ro ti | SwitchCaseFusion (not ro.ro_transform_fusion) True = skip_over this_case ro ti | isNilPtr case_info_ptr // encountered neverMatchingCase?! = skip_over this_case ro ti # (case_info, ti_symbol_heap) = readPtr case_info_ptr ti.ti_symbol_heap ti = { ti & ti_symbol_heap=ti_symbol_heap } (result_expr, ti) = case case_info of EI_Extended (EEI_ActiveCase aci) _ | is_variable case_expr -> skip_over this_case ro ti -> case ro.ro_root_case_mode of NotRootCase -> possibly_generate_case_function this_case aci ro ti _ -> transCase True (Yes aci) this_case ro ti _ -> transCase False No this_case ro ti ti = { ti & ti_symbol_heap = remove_aci_free_vars_info case_info_ptr ti.ti_symbol_heap } # final_expr = removeNeverMatchingSubcases result_expr ro = (final_expr, ti) // ---> ("transformCase",result_expr,final_expr) where is_variable (Var _) = True is_variable _ = False skip_over this_case=:{case_expr,case_guards,case_default} ro ti # ro_lost_root = { ro & ro_root_case_mode = NotRootCase } (new_case_expr, ti) = transform case_expr ro_lost_root ti (new_case_guards, ti) = transform case_guards ro_lost_root ti (new_case_default, ti) = transform case_default ro_lost_root ti = (Case { this_case & case_expr=new_case_expr, case_guards=new_case_guards, case_default=new_case_default }, ti) transCase is_active opt_aci this_case=:{case_expr = Case case_in_case} ro ti | is_active = lift_case case_in_case this_case ro ti = skip_over this_case ro ti where lift_case nested_case=:{case_guards,case_default} outer_case ro ti | isNilPtr nested_case.case_info_ptr // neverMatchingCase ?! = skip_over outer_case ro ti # default_exists = case case_default of Yes _ -> True No -> False (case_guards, ti) = lift_patterns default_exists case_guards outer_case ro ti (case_default, ti) = lift_default case_default outer_case ro ti (EI_CaseType outer_case_type, ti_symbol_heap) = readExprInfo outer_case.case_info_ptr ti.ti_symbol_heap // the result type of the nested case becomes the result type of the outer case ti_symbol_heap = overwrite_result_type nested_case.case_info_ptr outer_case_type.ct_result_type ti_symbol_heap // after this transformation the aci_free_vars information doesn't hold anymore ti_symbol_heap = remove_aci_free_vars_info nested_case.case_info_ptr ti_symbol_heap ti = { ti & ti_symbol_heap = ti_symbol_heap } = (Case {nested_case & case_guards = case_guards, case_default = case_default}, ti) where overwrite_result_type case_info_ptr new_result_type ti_symbol_heap #! (EI_CaseType case_type, ti_symbol_heap) = readExprInfo case_info_ptr ti_symbol_heap = writeExprInfo case_info_ptr (EI_CaseType { case_type & ct_result_type = new_result_type}) ti_symbol_heap lift_patterns default_exists (AlgebraicPatterns type case_guards) outer_case ro ti # guard_exprs = [ ap_expr \\ {ap_expr} <- case_guards ] # (guard_exprs_with_case, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti = (AlgebraicPatterns type [ { case_guard & ap_expr=guard_expr } \\ case_guard<-case_guards & guard_expr<-guard_exprs_with_case], ti) lift_patterns default_exists (BasicPatterns basic_type case_guards) outer_case ro ti # guard_exprs = [ bp_expr \\ {bp_expr} <- case_guards ] # (guard_exprs_with_case, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti = (BasicPatterns basic_type [ { case_guard & bp_expr=guard_expr } \\ case_guard<-case_guards & guard_expr<-guard_exprs_with_case], ti) lift_patterns default_exists (OverloadedListPatterns type decons_expr case_guards) outer_case ro ti # guard_exprs = [ ap_expr \\ {ap_expr} <- case_guards ] # (guard_exprs_with_case, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti = (OverloadedListPatterns type decons_expr [ { case_guard & ap_expr=guard_expr } \\ case_guard<-case_guards & guard_expr<-guard_exprs_with_case], ti) lift_patterns _ _ _ _ _ = abort "lift_patterns does not match" lift_patterns_2 False [guard_expr] outer_case ro ti // if no default pattern exists, then the outer case expression does not have to be copied for the last pattern # (guard_expr, ti) = possiblyFoldOuterCase True guard_expr outer_case ro ti = ([guard_expr], ti) lift_patterns_2 default_exists [guard_expr : guard_exprs] outer_case ro ti # (guard_expr, ti) = possiblyFoldOuterCase False guard_expr outer_case ro ti (guard_exprs, ti) = lift_patterns_2 default_exists guard_exprs outer_case ro ti = ([guard_expr : guard_exprs], ti) lift_patterns_2 _ [] _ _ ti = ([], ti) lift_default (Yes default_expr) outer_case ro ti # (default_expr, ti) = possiblyFoldOuterCase True default_expr outer_case ro ti = (Yes default_expr, ti) lift_default No _ _ ti = (No, ti) possiblyFoldOuterCase final guard_expr outer_case ro ti | SwitchAutoFoldCaseInCase (isFoldExpression guard_expr ti.ti_fun_defs ti.ti_cons_args) False // otherwise GOTO next alternative | False -!-> ("possiblyFoldOuterCase","Case",bef < 0 || act < 0,ro.ro_fun_args,aci.aci_params) = undef | bef < 0 || act < 0 = possiblyFoldOuterCase` final guard_expr outer_case ro ti //abort "possiblyFoldOuterCase: unexpected!\n" = transformApplication { app_symb = folder, app_args = folder_args, app_info_ptr = nilPtr } [] ro ti = possiblyFoldOuterCase` final guard_expr outer_case ro ti where (bef,act) = ro.ro_fun_geni new_f_a_before = take bef ro.ro_fun_args new_f_a_after = drop (bef+act) ro.ro_fun_args f_a_before = new_f_a_before //| new_f_a_before <> old_f_a_before = abort "!!!" f_a_after = new_f_a_after // = transformApplication { app_symb = folder, app_args = folder_args, app_info_ptr = nilPtr } [] ro ti // where isFoldExpression (App app) ti_fun_defs ti_cons_args = isFoldSymbol app.app_symb.symb_kind where isFoldSymbol (SK_Function {glob_module,glob_object}) | glob_module==ro.ro_stdStrictLists_module_n # type_arity = ro.ro_imported_funs.[glob_module].[glob_object].ft_type.st_arity | type_arity==0 || (type_arity==2 && case app.app_args of [_:_] -> True; _ -> False) = False = True | glob_module==ro.ro_main_dcl_module_n && glob_object>=size ti_cons_args && (ti_fun_defs.[glob_object].fun_info.fi_properties bitand FI_IsUnboxedListOfRecordsConsOrNil<>0) && (case ti_fun_defs.[glob_object].fun_type of Yes type ->(type.st_arity==0 || (type.st_arity==2 && case app.app_args of [_:_] -> True; _ -> False))) = False = True isFoldSymbol (SK_LocalMacroFunction _) = True isFoldSymbol (SK_GeneratedFunction _ _) = True isFoldSymbol _ = False isFoldExpression (Var _) ti_fun_defs ti_cons_args = True // isFoldExpression (Case _) ti_fun_defs ti_cons_args = True isFoldExpression _ ti_fun_defs ti_cons_args = False folder = ro.ro_fun_orig folder_args = f_a_before` ++ [guard_expr:f_a_after`] old_f_a_before = takeWhile (\e -> not (isMember e aci.aci_params)) ro.ro_fun_args old_f_a_help = dropWhile (\e -> not (isMember e aci.aci_params)) ro.ro_fun_args old_f_a_after = dropWhile (\e -> isMember e aci.aci_params) old_f_a_help f_a_before` = [Var {var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} \\ {fv_ident,fv_info_ptr} <- f_a_before] f_a_after` = [Var {var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} \\ {fv_ident,fv_info_ptr} <- f_a_after] (Yes aci) = opt_aci isMember x [hd:tl] = hd.fv_info_ptr==x.fv_info_ptr || isMember x tl isMember x [] = False possiblyFoldOuterCase` final guard_expr outer_case ro ti | final # new_case = {outer_case & case_expr = guard_expr} = transformCase new_case ro ti // ---> ("possiblyFoldOuterCase`",Case new_case) # us = { us_var_heap = ti.ti_var_heap, us_symbol_heap = ti.ti_symbol_heap, us_opt_type_heaps = No ,us_cleanup_info=ti.ti_cleanup_info, us_local_macro_functions = No } ui = {ui_handle_aci_free_vars = LeaveThem } (outer_guards, us=:{us_cleanup_info}) = unfold outer_case.case_guards ui us (expr_info, ti_symbol_heap) = readPtr outer_case.case_info_ptr us.us_symbol_heap (new_info_ptr, ti_symbol_heap) = newPtr expr_info ti_symbol_heap new_cleanup_info = case expr_info of EI_Extended _ _ -> [new_info_ptr:us_cleanup_info] _ -> us_cleanup_info ti = { ti & ti_var_heap = us.us_var_heap, ti_symbol_heap = ti_symbol_heap, ti_cleanup_info=new_cleanup_info } new_case = { outer_case & case_expr = guard_expr, case_guards=outer_guards, case_info_ptr=new_info_ptr } = transformCase new_case ro ti // ---> ("possiblyFoldOuterCase`",Case new_case) transCase is_active opt_aci this_case=:{case_expr = case_expr=:(App app=:{app_symb,app_args}),case_guards,case_default,case_explicit,case_ident} ro ti = case app_symb.symb_kind of SK_Constructor cons_index | not is_active -> skip_over this_case ro ti // XXX currently only active cases are matched at runtime (multimatch problem) # aci_linearity_of_patterns = case opt_aci of Yes aci -> aci.aci_linearity_of_patterns (may_be_match_expr, ti) = match_and_instantiate aci_linearity_of_patterns cons_index app_args case_guards case_default ro ti -> expr_or_never_matching_case may_be_match_expr case_ident ti SK_Function {glob_module,glob_object} | glob_module==ro.ro_stdStrictLists_module_n && is_active && (let type = ro.ro_imported_funs.[glob_module].[glob_object].ft_type in (type.st_arity==0 || (type.st_arity==2 && case app_args of [_:_] -> True; _ -> False))) # type = ro.ro_imported_funs.[glob_module].[glob_object].ft_type -> trans_case_of_overloaded_nil_or_cons type ti | glob_module==ro.ro_main_dcl_module_n && glob_object>=size ti.ti_cons_args && (ti.ti_fun_defs.[glob_object].fun_info.fi_properties bitand FI_IsUnboxedListOfRecordsConsOrNil)<>0 && is_active && (case ti.ti_fun_defs.[glob_object].fun_type of Yes type ->(type.st_arity==0 || (type.st_arity==2 && case app_args of [_:_] -> True; _ -> False))) # (Yes type,ti) = ti!ti_fun_defs.[glob_object].fun_type -> trans_case_of_overloaded_nil_or_cons type ti // otherwise it's a function application _ -> case opt_aci of Yes aci=:{ aci_params, aci_opt_unfolder } -> case aci_opt_unfolder of No -> skip_over this_case ro ti -!-> ("transCase","No opt unfolder") Yes unfolder | not (equal app_symb.symb_kind unfolder.symb_kind) // in this case a third function could be fused in -> possiblyFoldOuterCase this_case ro ti -!-> ("transCase","Diff opt unfolder",unfolder,app_symb) # variables = [ Var {var_ident=fv_ident, var_info_ptr=fv_info_ptr, var_expr_ptr=nilPtr} \\ {fv_ident, fv_info_ptr} <- ro.ro_fun_args ] (ti_next_fun_nr, ti) = ti!ti_next_fun_nr -!-> ("transCase","Yes opt unfolder",unfolder) (new_next_fun_nr, app_symb) = case ro.ro_root_case_mode of RootCaseOfZombie # (ro_fun=:{symb_kind=SK_GeneratedFunction fun_info_ptr _}) = ro.ro_fun_case -> (inc ti_next_fun_nr, { ro_fun & symb_kind=SK_GeneratedFunction fun_info_ptr ti_next_fun_nr }) -!-> ("Recursion","RootCaseOfZombie",ti_next_fun_nr,ti.ti_recursion_introduced) RootCase -> (ti_next_fun_nr, ro.ro_fun_root) -!-> ("Recursion","RootCase",ti_next_fun_nr,ro.ro_fun_root,ti.ti_recursion_introduced) ti = case ro.ro_root_case_mode of RootCaseOfZombie -> { ti & ti_next_fun_nr = new_next_fun_nr, ti_recursion_introduced = Yes ti_next_fun_nr } RootCase -> { ti & ti_next_fun_nr = new_next_fun_nr, ti_recursion_introduced = No } app_args1 = replace_arg [ fv_info_ptr \\ {fv_info_ptr}<-aci_params ] app_args variables (app_args2, ti) = transform app_args1 { ro & ro_root_case_mode = NotRootCase } ti -> (App {app_symb=app_symb, app_args=app_args2, app_info_ptr=nilPtr}, ti) No -> skip_over this_case ro ti where possiblyFoldOuterCase outer_case ro ti | SwitchAutoFoldAppInCase True False | False -!-> ("possiblyFoldOuterCase","App",bef < 0 || act < 0,ro.ro_fun_args,aci.aci_params) = undef | bef < 0 || act < 0 = skip_over this_case ro ti //abort "possiblyFoldOuterCase: unexpected!\n" = transformApplication { app_symb = folder, app_args = folder_args, app_info_ptr = nilPtr } [] ro ti = skip_over this_case ro ti where (bef,act) = ro.ro_fun_geni new_f_a_before = take bef ro.ro_fun_args new_f_a_after = drop (bef+act) ro.ro_fun_args f_a_before = new_f_a_before f_a_after = new_f_a_after folder = ro.ro_fun_orig folder_args = f_a_before` ++ [case_expr:f_a_after`] old_f_a_before = takeWhile (\e -> not (isMember e aci.aci_params)) ro.ro_fun_args old_f_a_help = dropWhile (\e -> not (isMember e aci.aci_params)) ro.ro_fun_args old_f_a_after = dropWhile (\e -> isMember e aci.aci_params) old_f_a_help f_a_before` = [Var {var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} \\ {fv_ident,fv_info_ptr} <- f_a_before] f_a_after` = [Var {var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} \\ {fv_ident,fv_info_ptr} <- f_a_after] (Yes aci) = opt_aci isMember x [hd:tl] = hd.fv_info_ptr==x.fv_info_ptr || isMember x tl isMember x [] = False equal (SK_Function glob_index1) (SK_Function glob_index2) = glob_index1==glob_index2 equal (SK_LocalMacroFunction glob_index1) (SK_LocalMacroFunction glob_index2) = glob_index1==glob_index2 equal (SK_GeneratedFunction _ index1) (SK_GeneratedFunction _ index2) = index1==index2 equal _ _ = False replace_arg [] _ f = f replace_arg producer_vars=:[fv_info_ptr:_] act_pars form_pars=:[h_form_pars=:(Var {var_info_ptr}):t_form_pars] | fv_info_ptr<>var_info_ptr = [h_form_pars:replace_arg producer_vars act_pars t_form_pars] = replacement producer_vars act_pars form_pars where replacement producer_vars [] form_pars = form_pars replacement producer_vars _ [] = [] replacement producer_vars [h_act_pars:t_act_pars] [form_par=:(Var {var_info_ptr}):form_pars] | isMember var_info_ptr producer_vars = [h_act_pars:replacement producer_vars t_act_pars form_pars] = replacement producer_vars t_act_pars form_pars match_and_instantiate linearities cons_index app_args (AlgebraicPatterns _ algebraicPatterns) case_default ro ti = match_and_instantiate_algebraic_type linearities cons_index app_args algebraicPatterns case_default ro ti where match_and_instantiate_algebraic_type [linearity:linearities] cons_index app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards] case_default ro ti | cons_index.glob_module == glob_module && cons_index.glob_object == ds_index # {cons_type} = ro.ro_common_defs.[glob_module].com_cons_defs.[ds_index] = instantiate linearity app_args ap_vars ap_expr cons_type.st_args_strictness cons_type.st_args ti = match_and_instantiate_algebraic_type linearities cons_index app_args guards case_default ro ti match_and_instantiate_algebraic_type _ cons_index app_args [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti match_and_instantiate linearities cons_index app_args (OverloadedListPatterns (OverloadedList _ _ _ _) _ algebraicPatterns) case_default ro ti = match_and_instantiate_overloaded_list linearities cons_index app_args algebraicPatterns case_default ro ti where match_and_instantiate_overloaded_list [linearity:linearities] cons_index=:{glob_module=cons_glob_module,glob_object=cons_ds_index} app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards] case_default ro ti | equal_list_contructor glob_module ds_index cons_glob_module cons_ds_index # {cons_type} = ro.ro_common_defs.[cons_glob_module].com_cons_defs.[cons_ds_index] = instantiate linearity app_args ap_vars ap_expr cons_type.st_args_strictness cons_type.st_args ti = match_and_instantiate_overloaded_list linearities cons_index app_args guards case_default ro ti where equal_list_contructor glob_module ds_index cons_glob_module cons_ds_index | glob_module==cPredefinedModuleIndex && cons_glob_module==cPredefinedModuleIndex # index=ds_index+FirstConstructorPredefinedSymbolIndex # cons_index=cons_ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_OverloadedConsSymbol = cons_index==PD_ConsSymbol || cons_index==PD_StrictConsSymbol || cons_index==PD_TailStrictConsSymbol || cons_index==PD_StrictTailStrictConsSymbol | index==PD_OverloadedNilSymbol = cons_index==PD_NilSymbol || cons_index==PD_StrictNilSymbol || cons_index==PD_TailStrictNilSymbol || cons_index==PD_StrictTailStrictNilSymbol = abort "equal_list_contructor" match_and_instantiate_overloaded_list _ cons_index app_args [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti trans_case_of_overloaded_nil_or_cons type ti | type.st_arity==0 # (may_be_match_expr, ti) = match_and_instantiate_overloaded_nil case_guards case_default ro ti = expr_or_never_matching_case may_be_match_expr case_ident ti # aci_linearity_of_patterns = case opt_aci of Yes aci -> aci.aci_linearity_of_patterns (may_be_match_expr, ti) = match_and_instantiate_overloaded_cons type aci_linearity_of_patterns app_args case_guards case_default ro ti = expr_or_never_matching_case may_be_match_expr case_ident ti where match_and_instantiate_overloaded_nil (OverloadedListPatterns _ _ algebraicPatterns) case_default ro ti = match_and_instantiate_nil algebraicPatterns case_default ro ti match_and_instantiate_overloaded_nil (AlgebraicPatterns _ algebraicPatterns) case_default ro ti = match_and_instantiate_nil algebraicPatterns case_default ro ti match_and_instantiate_nil [{ap_symbol={glob_module,glob_object={ds_index}},ap_expr} : guards] case_default ro ti | glob_module==cPredefinedModuleIndex # index=ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_NilSymbol || index==PD_StrictNilSymbol || index==PD_TailStrictNilSymbol || index==PD_StrictTailStrictNilSymbol || index==PD_OverloadedNilSymbol || index==PD_UnboxedNilSymbol || index==PD_UnboxedTailStrictNilSymbol = instantiate [] [] [] ap_expr NotStrict [] ti = match_and_instantiate_nil guards case_default ro ti match_and_instantiate_nil [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti match_and_instantiate_overloaded_cons cons_function_type linearities app_args (AlgebraicPatterns _ algebraicPatterns) case_default ro ti = match_and_instantiate_overloaded_cons_boxed_match linearities app_args algebraicPatterns case_default ro ti where match_and_instantiate_overloaded_cons_boxed_match [linearity:linearities] app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards] case_default ro ti | glob_module==cPredefinedModuleIndex # index=ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_ConsSymbol || index==PD_StrictConsSymbol || index==PD_TailStrictConsSymbol || index==PD_StrictTailStrictConsSymbol # {cons_type} = ro.ro_common_defs.[glob_module].com_cons_defs.[ds_index] = instantiate linearity app_args ap_vars ap_expr cons_type.st_args_strictness cons_type.st_args ti // | index==PD_NilSymbol || index==PD_StrictNilSymbol || index==PD_TailStrictNilSymbol || index==PD_StrictTailStrictNilSymbol = match_and_instantiate_overloaded_cons_boxed_match linearities app_args guards case_default ro ti // = abort "match_and_instantiate_overloaded_cons_boxed_match" match_and_instantiate_overloaded_cons_boxed_match _ app_args [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti match_and_instantiate_overloaded_cons cons_function_type linearities app_args (OverloadedListPatterns _ _ algebraicPatterns) case_default ro ti = match_and_instantiate_overloaded_cons_overloaded_match linearities app_args algebraicPatterns case_default ro ti where match_and_instantiate_overloaded_cons_overloaded_match [linearity:linearities] app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards] case_default ro ti | glob_module==cPredefinedModuleIndex # index=ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_UnboxedConsSymbol || index==PD_UnboxedTailStrictConsSymbol || index==PD_OverloadedConsSymbol = instantiate linearity app_args ap_vars ap_expr cons_function_type.st_args_strictness cons_function_type.st_args ti // | index==PD_UnboxedNilSymbol || index==PD_UnboxedTailStrictNilSymbol || index==PD_OverloadedNilSymbol = match_and_instantiate_overloaded_cons_overloaded_match linearities app_args guards case_default ro ti // = abort "match_and_instantiate_overloaded_cons_overloaded_match" match_and_instantiate_overloaded_cons_overloaded_match _ app_args [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti /* match_and_instantiate_overloaded_cons linearities app_args (OverloadedListPatterns _ (App {app_args=[],app_symb={symb_kind=SK_Function {glob_module=decons_module,glob_object=deconsindex}}}) algebraicPatterns) case_default ro ti = match_and_instantiate_overloaded_cons_overloaded_match linearities app_args algebraicPatterns case_default ro ti where match_and_instantiate_overloaded_cons_overloaded_match [linearity:linearities] app_args [{ap_symbol={glob_module,glob_object={ds_index}}, ap_vars, ap_expr} : guards] case_default ro ti | glob_module==cPredefinedModuleIndex # index=ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_UnboxedConsSymbol || index==PD_UnboxedTailStrictConsSymbol || index==PD_OverloadedConsSymbol # (argument_types,strictness) = case ro.ro_imported_funs.[decons_module].[deconsindex].ft_type.st_result.at_type of TA _ args=:[arg1,arg2] -> (args,NotStrict) TAS _ args=:[arg1,arg2] strictness -> (args,strictness) = instantiate linearity app_args ap_vars ap_expr strictness argument_types ti | index==PD_UnboxedNilSymbol || index==PD_UnboxedTailStrictNilSymbol || index==PD_OverloadedNilSymbol = match_and_instantiate_overloaded_cons_overloaded_match linearities app_args guards case_default ro ti = abort "match_and_instantiate_overloaded_cons_overloaded_match" match_and_instantiate_overloaded_cons_overloaded_match [linearity:linearities] app_args [guard : guards] case_default ro ti = match_and_instantiate_overloaded_cons_overloaded_match linearities app_args guards case_default ro ti match_and_instantiate_overloaded_cons_overloaded_match _ app_args [] case_default ro ti = transform case_default { ro & ro_root_case_mode = NotRootCase } ti */ instantiate linearity app_args ap_vars ap_expr cons_type_args_strictness cons_type_args ti # zipped = zip2 ap_vars app_args // XXX // unfoldables = [ ((not (arg_is_strict i cons_type_args_strictness)) && linear) || in_normal_form app_arg \\ linear <- linearity & app_arg <- app_args & i <- [0..]] // YYY (body_strictness,ti_fun_defs,ti_fun_heap) = body_strict ap_expr ap_vars ro ti.ti_fun_defs ti.ti_fun_heap ti = {ti & ti_fun_defs = ti_fun_defs, ti_fun_heap = ti_fun_heap} // ---> ("body_strictness",[if (arg_is_strict i body_strictness) '!' '.' \\ i <- [0..] & a <- ap_vars],ap_vars,ap_expr) unfoldables = [ (arg_is_strict i body_strictness || ((not (arg_is_strict i cons_type_args_strictness))) && linear) || in_normal_form app_arg \\ linear <- linearity & app_arg <- app_args & i <- [0..]] // ZZZ unfoldable_args = filterWith unfoldables zipped not_unfoldable = map not unfoldables non_unfoldable_args = filterWith not_unfoldable zipped ti_var_heap = foldSt (\({fv_info_ptr}, arg) -> writeVarInfo fv_info_ptr (VI_Expression arg)) unfoldable_args ti.ti_var_heap // (new_expr, ti_symbol_heap) = possibly_add_let non_unfoldable_args ap_expr not_unfoldable cons_type_args ro ti.ti_symbol_heap (new_expr, ti_symbol_heap) = possibly_add_let zipped ap_expr not_unfoldable cons_type_args ro ti.ti_symbol_heap cons_type_args_strictness unfold_state = { us_var_heap = ti_var_heap, us_symbol_heap = ti_symbol_heap, us_opt_type_heaps = No,us_cleanup_info=ti.ti_cleanup_info, us_local_macro_functions = No } ui= {ui_handle_aci_free_vars = LeaveThem } (unfolded_expr, unfold_state) = unfold new_expr ui unfold_state (final_expr, ti) = transform unfolded_expr { ro & ro_root_case_mode = NotRootCase } { ti & ti_var_heap = unfold_state.us_var_heap, ti_symbol_heap = unfold_state.us_symbol_heap,ti_cleanup_info=unfold_state.us_cleanup_info } // | False ---> ("instantiate",app_args,ap_vars,ap_expr,final_expr,unfoldables) = undef = (Yes final_expr, ti) where body_strict (Var v) ap_vars ro fun_defs fun_heap # lazy_args = insert_n_lazy_values_at_beginning (length app_args) NotStrict # is = [i \\ i <- [0..] & var <- ap_vars | v.var_info_ptr == var.fv_info_ptr] = case is of [] -> (lazy_args,fun_defs,fun_heap) [i:_] -> (add_strictness i lazy_args,fun_defs,fun_heap) body_strict (App app) ap_vars ro fun_defs fun_heap # (is,fun_defs,fun_heap) = app_indices app ro fun_defs fun_heap # lazy_args = insert_n_lazy_values_at_beginning (length app_args) NotStrict = (seq (map add_strictness is) lazy_args, fun_defs,fun_heap) body_strict _ _ ro fun_defs fun_heap # lazy_args = insert_n_lazy_values_at_beginning (length app_args) NotStrict = (lazy_args,fun_defs,fun_heap) app_indices {app_symb,app_args} ro fun_defs fun_heap # ({st_args_strictness,st_arity},fun_defs,fun_heap) = get_producer_type app_symb ro fun_defs fun_heap | length app_args == st_arity = find_indices st_args_strictness 0 app_args ro fun_defs fun_heap = ([],fun_defs,fun_heap) where find_indices st_args_strictness i [] ro fun_defs fun_heap = ([],fun_defs,fun_heap) find_indices st_args_strictness i [e:es] ro fun_defs fun_heap # (is,fun_defs,fun_heap) = find_index st_args_strictness i e ro fun_defs fun_heap # (iss,fun_defs,fun_heap) = find_indices st_args_strictness (i+1) es ro fun_defs fun_heap = (is++iss,fun_defs,fun_heap) find_index st_args_strictness i e ro fun_defs fun_heap | arg_is_strict i st_args_strictness = case e of Var v -> ([i \\ i <- [0..] & var <- ap_vars | v.var_info_ptr == var.fv_info_ptr],fun_defs,fun_heap) App a -> app_indices a ro fun_defs fun_heap _ -> ([],fun_defs,fun_heap) = ([],fun_defs,fun_heap) expr_or_never_matching_case (Yes match_expr) case_ident ti = (match_expr, ti) expr_or_never_matching_case No case_ident ti = (neverMatchingCase never_ident, ti) <-!- ("transCase:App:neverMatchingCase",never_ident) where never_ident = case ro.ro_root_case_mode of NotRootCase -> case_ident _ -> Yes ro.ro_fun_case.symb_ident transCase is_active opt_aci this_case=:{case_expr = (BasicExpr basic_value),case_guards,case_default} ro ti | not is_active = skip_over this_case ro ti // XXX currently only active cases are matched at runtime (multimatch problem) # basicPatterns = getBasicPatterns case_guards may_be_match_pattern = dropWhile (\{bp_value} -> bp_value<>basic_value) basicPatterns | isEmpty may_be_match_pattern = case case_default of Yes default_expr-> transform default_expr { ro & ro_root_case_mode = NotRootCase } ti No -> (neverMatchingCase never_ident, ti) <-!- ("transCase:BasicExpr:neverMatchingCase",never_ident) with never_ident = case ro.ro_root_case_mode of NotRootCase -> this_case.case_ident _ -> Yes ro.ro_fun_case.symb_ident = transform (hd may_be_match_pattern).bp_expr { ro & ro_root_case_mode = NotRootCase } ti where getBasicPatterns (BasicPatterns _ basicPatterns) = basicPatterns transCase is_active opt_aci this_case=:{case_expr = (Let lad)} ro ti | not is_active = skip_over this_case ro ti # ro_not_root = { ro & ro_root_case_mode = NotRootCase } (new_let_strict_binds, ti) = transform lad.let_strict_binds ro_not_root ti (new_let_lazy_binds, ti) = transform lad.let_lazy_binds ro_not_root ti (new_let_expr, ti) = transform (Case { this_case & case_expr = lad.let_expr }) ro ti = (Let { lad & let_expr = new_let_expr, let_strict_binds = new_let_strict_binds, let_lazy_binds = new_let_lazy_binds }, ti) transCase is_active opt_aci this_case ro ti = skip_over this_case ro ti in_normal_form (Var _) = True in_normal_form (BasicExpr _) = True in_normal_form _ = False filterWith [True:t2] [h1:t1] = [h1:filterWith t2 t1] filterWith [False:t2] [h1:t1] = filterWith t2 t1 filterWith _ _ = [] possibly_add_let [] ap_expr _ _ _ ti_symbol_heap cons_type_args_strictness = (ap_expr, ti_symbol_heap) possibly_add_let non_unfoldable_args ap_expr not_unfoldable cons_type_args ro ti_symbol_heap cons_type_args_strictness # let_type = filterWith not_unfoldable cons_type_args (new_info_ptr, ti_symbol_heap) = newPtr (EI_LetType let_type) ti_symbol_heap = SwitchStrictPossiblyAddLet ( Let { let_strict_binds = [ {lb_src=lb_src, lb_dst=lb_dst, lb_position = NoPos} \\ (lb_dst,lb_src)<-non_unfoldable_args & n <- not_unfoldable & i <- [0..] | n && arg_is_strict i cons_type_args_strictness ] , let_lazy_binds = [ {lb_src=lb_src, lb_dst=lb_dst, lb_position = NoPos} \\ (lb_dst,lb_src)<-non_unfoldable_args & n <- not_unfoldable & i <- [0..] | n && not (arg_is_strict i cons_type_args_strictness) ] , let_expr = ap_expr , let_info_ptr = new_info_ptr , let_expr_position = NoPos } , ti_symbol_heap ) ( Let { let_strict_binds = [] , let_lazy_binds = [ {lb_src=lb_src, lb_dst=lb_dst, lb_position = NoPos} \\ (lb_dst,lb_src)<-non_unfoldable_args & n <- not_unfoldable | n ] , let_expr = ap_expr , let_info_ptr = new_info_ptr , let_expr_position = NoPos } , ti_symbol_heap ) possibly_generate_case_function :: !Case !ActiveCaseInfo !ReadOnlyTI !*TransformInfo -> *(!Expression, !*TransformInfo) possibly_generate_case_function kees=:{case_info_ptr} aci=:{aci_free_vars} ro ti=:{ti_recursion_introduced=old_ti_recursion_introduced} // | False -!-> ("possibly_generate_case_function",ro.ro_fun_root.symb_ident.id_name,ro.ro_fun_case.symb_ident.id_name,ro.ro_root_case_mode) // = undef | not aci.aci_safe = skip_over kees ro ti // determine free variables # ti_var_heap = clearVariables (Case kees) ti.ti_var_heap fvi = { fvi_var_heap = ti_var_heap, fvi_expr_heap = ti.ti_symbol_heap, fvi_variables = [], fvi_expr_ptrs = ti.ti_cleanup_info } {fvi_var_heap, fvi_expr_heap, fvi_variables, fvi_expr_ptrs} = freeVariables (Case kees) fvi ti = { ti & ti_var_heap = fvi_var_heap, ti_symbol_heap = fvi_expr_heap, ti_cleanup_info = fvi_expr_ptrs } free_vars = fvi_variables // search function definition and consumer arguments (outer_fun_def, outer_cons_args, ti_cons_args, ti_fun_defs, ti_fun_heap) = get_fun_def_and_cons_args ro.ro_fun_root.symb_kind ti.ti_cons_args ti.ti_fun_defs ti.ti_fun_heap outer_arguments = case outer_fun_def.fun_body of TransformedBody {tb_args} -> tb_args Expanding args -> args outer_info_ptrs = [ fv_info_ptr \\ {fv_info_ptr}<-outer_arguments] free_var_info_ptrs = [ var_info_ptr \\ {var_info_ptr}<-free_vars ] used_mask = [isMember fv_info_ptr free_var_info_ptrs \\ {fv_info_ptr}<-outer_arguments] arguments_from_outer_fun = [ outer_argument \\ outer_argument<-outer_arguments & used<-used_mask | used ] lifted_arguments = [ { fv_def_level = undeff, fv_ident = var_ident, fv_info_ptr = var_info_ptr, fv_count = undeff} \\ {var_ident, var_info_ptr} <- free_vars | not (isMember var_info_ptr outer_info_ptrs)] all_args = lifted_arguments++arguments_from_outer_fun | SwitchArityChecks (length all_args > 32) False # ti = { ti & ti_cons_args = ti_cons_args, ti_fun_defs = ti_fun_defs, ti_fun_heap = ti_fun_heap, ti_recursion_introduced = No } | ro.ro_transform_fusion # ti = { ti & ti_error_file = ti.ti_error_file <<< "Possibly missed fusion oppurtunity: Case Arity > 32 " <<< ro.ro_fun_root.symb_ident.id_name <<< "\n"} = skip_over kees ro ti = skip_over kees ro ti # (fun_info_ptr, ti_fun_heap) = newPtr FI_Empty ti_fun_heap fun_ident = { id_name = ro.ro_fun_root.symb_ident.id_name+++"_case", id_info = nilPtr } fun_ident = { symb_ident = fun_ident, symb_kind=SK_GeneratedFunction fun_info_ptr undeff } <-!- ("<< ("possibly_generate_case_function",Case kees) (ti_recursion_introduced, ti) = ti!ti_recursion_introduced <-!- ("transformCaseFunction>>>",fun_ident) ti = { ti & ti_recursion_introduced = old_ti_recursion_introduced } = case ti_recursion_introduced of Yes fun_index -> generate_case_function fun_index case_info_ptr new_expr outer_fun_def outer_cons_args used_mask new_ro ti No -> (new_expr, ti) generate_case_function :: !Int !ExprInfoPtr !Expression FunDef .ConsClasses [.Bool] !.ReadOnlyTI !*TransformInfo -> (!Expression,!*TransformInfo) generate_case_function fun_index case_info_ptr new_expr outer_fun_def outer_cons_args used_mask {ro_fun_case=ro_fun=:{symb_kind=SK_GeneratedFunction fun_info_ptr _}, ro_fun_args} ti // | False -!-> ("generate_case_function",ro_fun.symb_ident) = undef # fun_arity = length ro_fun_args # ti = arity_warning "generate_case_function" ro_fun.symb_ident fun_index fun_arity ti (Yes {st_vars,st_args,st_attr_env}) = outer_fun_def.fun_type types_from_outer_fun = [ st_arg \\ st_arg <- st_args & used <- used_mask | used ] nr_of_lifted_vars = fun_arity-(length types_from_outer_fun) (lifted_types, ti_var_heap) = mapSt get_type_of_local_var (take nr_of_lifted_vars ro_fun_args) ti.ti_var_heap (EI_CaseType {ct_result_type}, ti_symbol_heap) = readExprInfo case_info_ptr ti.ti_symbol_heap (form_vars, ti_var_heap) = mapSt bind_to_fresh_expr_var ro_fun_args ti_var_heap arg_types = lifted_types++types_from_outer_fun # ti = {ti & ti_var_heap = ti_var_heap, ti_symbol_heap = ti_symbol_heap} # (fun_type,ti) = determine_case_function_type fun_arity ct_result_type arg_types st_attr_env ti // unfold... us = { us_var_heap = ti.ti_var_heap , us_symbol_heap = ti.ti_symbol_heap , us_opt_type_heaps = Yes ti.ti_type_heaps , us_cleanup_info = ti.ti_cleanup_info , us_local_macro_functions = No } ui = { ui_handle_aci_free_vars = SubstituteThem } (copied_expr, us) = unfold new_expr ui us {us_var_heap=ti_var_heap, us_symbol_heap=ti_symbol_heap, us_cleanup_info=ti_cleanup_info, us_opt_type_heaps = Yes ti_type_heaps} = us // generated function... fun_def = { fun_ident = ro_fun.symb_ident , fun_arity = fun_arity , fun_priority = NoPrio , fun_body = TransformedBody { tb_args = form_vars, tb_rhs = copied_expr} , fun_type = Yes fun_type , fun_pos = NoPos , fun_kind = FK_Function cNameNotLocationDependent , fun_lifted = undeff , fun_info = { fi_calls = [] , fi_group_index = outer_fun_def.fun_info.fi_group_index , fi_def_level = NotALevel , fi_free_vars = [] , fi_local_vars = [] , fi_dynamics = [] // Sjaak: , fi_is_macro_fun = outer_fun_def.fun_info.fi_is_macro_fun , fi_properties = outer_fun_def.fun_info.fi_properties } } # cc_args_from_outer_fun = [ cons_arg \\ cons_arg <- outer_cons_args.cc_args & used <- used_mask | used ] cc_linear_bits_from_outer_fun = [ cons_arg \\ cons_arg <- outer_cons_args.cc_linear_bits & used <- used_mask | used ] new_cons_args = { cc_size = fun_arity , cc_args = repeatn nr_of_lifted_vars CPassive ++ cc_args_from_outer_fun , cc_linear_bits = repeatn nr_of_lifted_vars False ++ cc_linear_bits_from_outer_fun , cc_producer = False } gf = { gf_fun_def = fun_def , gf_instance_info = II_Empty , gf_cons_args = new_cons_args , gf_fun_index = fun_index } ti_fun_heap = writePtr fun_info_ptr (FI_Function gf) ti.ti_fun_heap ti = { ti & ti_new_functions = [fun_info_ptr:ti.ti_new_functions] , ti_var_heap = ti_var_heap , ti_fun_heap = ti_fun_heap , ti_symbol_heap = ti_symbol_heap , ti_type_heaps = ti_type_heaps , ti_cleanup_info = ti_cleanup_info } app_symb = { ro_fun & symb_kind = SK_GeneratedFunction fun_info_ptr fun_index} app_args = map free_var_to_bound_var ro_fun_args = ( App {app_symb = app_symb, app_args = app_args, app_info_ptr = nilPtr}, ti) where get_type_of_local_var {fv_info_ptr} var_heap # (EVI_VarType a_type, var_heap) = readExtendedVarInfo fv_info_ptr var_heap = (a_type, var_heap) free_var_to_bound_var {fv_ident, fv_info_ptr} = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr} determine_case_function_type fun_arity ct_result_type arg_types st_attr_env ti # {ti_type_heaps} = ti {th_vars} = ti_type_heaps (type_variables, th_vars) = getTypeVars [ct_result_type:arg_types] th_vars (fresh_type_vars, th_vars) = mapSt bind_to_fresh_type_variable type_variables th_vars ti_type_heaps = { ti_type_heaps & th_vars = th_vars } (fresh_arg_types, ti_type_heaps) = substitute arg_types ti_type_heaps (fresh_result_type, ti_type_heaps) = substitute ct_result_type ti_type_heaps fun_type = { st_vars = fresh_type_vars , st_args = fresh_arg_types , st_arity = fun_arity , st_args_strictness = NotStrict , st_result = fresh_result_type , st_context = [] , st_attr_vars = [] , st_attr_env = [] } ti = { ti & ti_type_heaps = ti_type_heaps } = (fun_type,ti) removeNeverMatchingSubcases :: Expression !.ReadOnlyTI -> Expression removeNeverMatchingSubcases keesExpr=:(Case kees) ro // remove those case guards whose right hand side is a never matching case | is_never_matching_case keesExpr = keesExpr # {case_guards, case_default} = kees filtered_default = get_filtered_default case_default = case case_guards of AlgebraicPatterns i alg_patterns | not (any (is_never_matching_case o get_alg_rhs) alg_patterns) && not (is_never_matching_default case_default) -> keesExpr // frequent case: all subexpressions can't fail # filtered_case_guards = filter (not o is_never_matching_case o get_alg_rhs) alg_patterns | has_become_never_matching filtered_default filtered_case_guards -> neverMatchingCase never_ident <-!- ("removeNeverMatchingSubcases:AlgebraicPatterns:neverMatchingCase",never_ident) | is_default_only filtered_default filtered_case_guards -> fromYes case_default -> Case {kees & case_guards = AlgebraicPatterns i filtered_case_guards, case_default = filtered_default } BasicPatterns bt basic_patterns | not (any (is_never_matching_case o get_basic_rhs) basic_patterns) && not (is_never_matching_default case_default) -> keesExpr // frequent case: all subexpressions can't fail # filtered_case_guards = filter (not o is_never_matching_case o get_basic_rhs) basic_patterns | has_become_never_matching filtered_default filtered_case_guards -> neverMatchingCase never_ident <-!- ("removeNeverMatchingSubcases:BasicPatterns:neverMatchingCase",never_ident) | is_default_only filtered_default filtered_case_guards -> fromYes case_default -> Case {kees & case_guards = BasicPatterns bt filtered_case_guards, case_default = filtered_default } OverloadedListPatterns i decons_expr alg_patterns | not (any (is_never_matching_case o get_alg_rhs) alg_patterns) && not (is_never_matching_default case_default) -> keesExpr // frequent case: all subexpressions can't fail # filtered_case_guards = filter (not o is_never_matching_case o get_alg_rhs) alg_patterns | has_become_never_matching filtered_default filtered_case_guards -> neverMatchingCase never_ident <-!- ("removeNeverMatchingSubcases:OverloadedListPatterns:neverMatchingCase",never_ident) | is_default_only filtered_default filtered_case_guards -> fromYes case_default -> Case {kees & case_guards = OverloadedListPatterns i decons_expr filtered_case_guards, case_default = filtered_default } _ -> abort "removeNeverMatchingSubcases does not match" where get_filtered_default y=:(Yes c_default) | is_never_matching_case c_default = No = y get_filtered_default no = no has_become_never_matching No [] = True has_become_never_matching _ _ = False is_default_only (Yes _) [] = True is_default_only _ _ = False is_never_matching_case (Case {case_guards = NoPattern, case_default = No }) = True is_never_matching_case _ = False get_alg_rhs {ap_expr} = ap_expr get_basic_rhs {bp_expr} = bp_expr is_never_matching_default No = False is_never_matching_default (Yes expr) = is_never_matching_case expr never_ident = case ro.ro_root_case_mode of NotRootCase -> kees.case_ident _ -> Yes ro.ro_fun_case.symb_ident removeNeverMatchingSubcases expr ro = expr instance transform LetBind where transform bind=:{lb_src} ro ti # (lb_src, ti) = transform lb_src ro ti = ({ bind & lb_src = lb_src }, ti) instance transform BasicPattern where transform pattern=:{bp_expr} ro ti # (bp_expr, ti) = transform bp_expr ro ti = ({ pattern & bp_expr = bp_expr }, ti) instance transform AlgebraicPattern where transform pattern=:{ap_expr} ro ti # (ap_expr, ti) = transform ap_expr ro ti = ({ pattern & ap_expr = ap_expr }, ti) instance transform CasePatterns where transform (AlgebraicPatterns type patterns) ro ti # (patterns, ti) = transform patterns ro ti = (AlgebraicPatterns type patterns, ti) transform (BasicPatterns type patterns) ro ti # (patterns, ti) = transform patterns ro ti = (BasicPatterns type patterns, ti) transform (OverloadedListPatterns type=:(OverloadedList _ _ _ _) decons_expr patterns) ro ti # (patterns, ti) = transform patterns ro ti # (decons_expr, ti) = transform decons_expr ro ti = (OverloadedListPatterns type decons_expr patterns, ti) transform (OverloadedListPatterns type decons_expr patterns) ro ti # (patterns, ti) = transform patterns ro ti # (decons_expr, ti) = transform decons_expr ro ti = (OverloadedListPatterns type decons_expr patterns, ti) transform NoPattern ro ti = (NoPattern, ti) transform _ ro ti = abort "transform CasePatterns does not match" instance transform (Optional a) | transform a where transform (Yes x) ro ti # (x, ti) = transform x ro ti = (Yes x, ti) transform no ro ti = (no, ti) instance transform [a] | transform a where transform [x : xs] ro ti # (x, ti) = transform x ro ti (xs, ti) = transform xs ro ti = ([x : xs], ti) transform [] ro ti = ([], ti) //@ tryToFindInstance: cIsANewFunction :== True cIsNotANewFunction :== False tryToFindInstance :: !{! Producer} !InstanceInfo !*(Heap FunctionInfo) -> *(!Bool, !FunctionInfoPtr, !InstanceInfo, !.FunctionHeap) tryToFindInstance new_prods II_Empty fun_heap # (fun_def_ptr, fun_heap) = newPtr FI_Empty fun_heap = (cIsANewFunction, fun_def_ptr, II_Node new_prods fun_def_ptr II_Empty II_Empty, fun_heap) tryToFindInstance new_prods instances=:(II_Node prods fun_def_ptr left right) fun_heap | size new_prods > size prods # (is_new, new_fun_def_ptr, right, fun_heap) = tryToFindInstance new_prods right fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) | size new_prods < size prods # (is_new, new_fun_def_ptr, left, fun_heap) = tryToFindInstance new_prods left fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) # cmp = compareProducers new_prods prods | cmp == Equal = (cIsNotANewFunction, fun_def_ptr, instances, fun_heap) | cmp == Greater # (is_new, new_fun_def_ptr, right, fun_heap) = tryToFindInstance new_prods right fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) # (is_new, new_fun_def_ptr, left, fun_heap) = tryToFindInstance new_prods left fun_heap = (is_new, new_fun_def_ptr, II_Node prods fun_def_ptr left right, fun_heap) compareProducers prods1 prods2 #! nr_of_prods = size prods1 = compare_producers 0 nr_of_prods prods1 prods2 where compare_producers prod_index nr_of_prods prods1 prods2 | prod_index == nr_of_prods = Equal # cmp = prods1.[prod_index] =< prods2.[prod_index] | cmp == Equal = compare_producers (inc prod_index) nr_of_prods prods1 prods2 = cmp instance =< Bool where (=<) True True = Equal (=<) True False = Smaller (=<) False True = Greater (=<) False False = Equal instance =< Producer where (=<) pr1 pr2 | equal_constructor pr1 pr2 = compare_constructor_arguments pr1 pr2 | less_constructor pr1 pr2 = Smaller = Greater where compare_constructor_arguments (PR_Function _ _ index1) (PR_Function _ _ index2) = index1 =< index2 compare_constructor_arguments (PR_GeneratedFunction _ _ index1) (PR_GeneratedFunction _ _ index2) = index1 =< index2 compare_constructor_arguments (PR_Class app1 lifted_vars_with_types1 t1) (PR_Class app2 lifted_vars_with_types2 t2) // = app1.app_args =< app2.app_args # cmp = smallerOrEqual t1 t2 | cmp<>Equal = cmp = compare_types lifted_vars_with_types1 lifted_vars_with_types2 compare_constructor_arguments (PR_Curried symb_ident1 _) (PR_Curried symb_ident2 _) = symb_ident1 =< symb_ident2 compare_constructor_arguments PR_Empty PR_Empty = Equal compare_constructor_arguments PR_Unused PR_Unused = Equal compare_constructor_arguments (PR_Constructor symb_ident1 _ _) (PR_Constructor symb_ident2 _ _) = symb_ident1 =< symb_ident2 compare_types [(_, type1):types1] [(_, type2):types2] # cmp = smallerOrEqual type1 type2 | cmp<>Equal = cmp = compare_types types1 types2 compare_types [] [] = Equal compare_types [] _ = Smaller compare_types _ [] = Greater /* * UNIQUENESS STUFF... */ create_fresh_type_vars :: !Int !*TypeVarHeap -> (!{!TypeVar}, !*TypeVarHeap) create_fresh_type_vars nr_of_all_type_vars th_vars # fresh_array = createArray nr_of_all_type_vars {tv_ident = {id_name="",id_info=nilPtr}, tv_info_ptr=nilPtr} = iFoldSt allocate_fresh_type_var 0 nr_of_all_type_vars (fresh_array,th_vars) where allocate_fresh_type_var i (array, th_vars) # (new_tv_info_ptr, th_vars) = newPtr TVI_Empty th_vars tv = { tv_ident = { id_name = "a"+++toString i, id_info = nilPtr }, tv_info_ptr=new_tv_info_ptr } = ({array & [i] = tv}, th_vars) create_fresh_attr_vars :: !{!CoercionTree} !Int !*AttrVarHeap -> (!{!TypeAttribute}, !.AttrVarHeap) create_fresh_attr_vars demanded nr_of_attr_vars th_attrs # fresh_array = createArray nr_of_attr_vars TA_None = iFoldSt (allocate_fresh_attr_var demanded) 0 nr_of_attr_vars (fresh_array, th_attrs) where allocate_fresh_attr_var demanded i (attr_var_array, th_attrs) = case demanded.[i] of CT_Unique -> ({ attr_var_array & [i] = TA_Unique}, th_attrs) CT_NonUnique -> ({ attr_var_array & [i] = TA_Multi}, th_attrs) _ # (new_info_ptr, th_attrs) = newPtr AVI_Empty th_attrs -> ({ attr_var_array & [i] = TA_Var { av_ident = NewAttrVarId i, av_info_ptr = new_info_ptr }}, th_attrs) coercionsToAttrEnv :: !{!TypeAttribute} !Coercions -> [AttrInequality] coercionsToAttrEnv attr_vars {coer_demanded, coer_offered} = flatten [ [ {ai_offered = toAttrVar attr_vars.[offered], ai_demanded = toAttrVar attr_vars.[demanded] } \\ offered <- fst (flattenCoercionTree offered_tree) ] \\ offered_tree<-:coer_offered & demanded<-[0..] ] where toAttrVar (TA_Var av) = av substitute_attr_inequality {ai_offered, ai_demanded} th_attrs #! ac_offered = pointer_to_int ai_offered th_attrs ac_demanded = pointer_to_int ai_demanded th_attrs = ({ ac_offered = ac_offered, ac_demanded = ac_demanded }, th_attrs) where pointer_to_int {av_info_ptr} th_attrs # (AVI_Attr (TA_TempVar i)) = sreadPtr av_info_ptr th_attrs = i new_inequality {ac_offered, ac_demanded} coercions = newInequality ac_offered ac_demanded coercions :: UniquenessRequirement = { ur_offered :: !AType , ur_demanded :: !AType , ur_attr_ineqs :: ![AttrCoercion] } readableCoercions {coer_demanded} = [ (i, readable coer_demanded.[i]) \\ i<-[0..size coer_demanded - 1] ] where readable CT_Unique = [TA_Unique] readable CT_NonUnique = [TA_Multi] readable ct # (vars, _) = flattenCoercionTree ct = map TA_TempVar vars :: ATypesWithStrictness = {ats_types::![AType],ats_strictness::!StrictnessList}; compute_args_strictness new_arg_types_array = compute_args_strictness 0 0 NotStrict 0 new_arg_types_array where compute_args_strictness strictness_index strictness strictness_list array_index new_arg_types_array | array_index==size new_arg_types_array | strictness==0 = strictness_list = append_strictness strictness strictness_list # {ats_types,ats_strictness} = new_arg_types_array.[array_index] # (strictness_index,strictness) = add_strictness_for_arguments ats_types 0 strictness_index strictness strictness_list with add_strictness_for_arguments [] ats_strictness_index strictness_index strictness strictness_list = (strictness_index,strictness) add_strictness_for_arguments [_:ats_types] ats_strictness_index strictness_index strictness strictness_list | arg_is_strict ats_strictness_index ats_strictness # (strictness_index,strictness,strictness_list) = add_next_strict strictness_index strictness strictness_list = add_strictness_for_arguments ats_types (ats_strictness_index+1) strictness_index strictness strictness_list # (strictness_index,strictness,strictness_list) = add_next_not_strict strictness_index strictness strictness_list = add_strictness_for_arguments ats_types (ats_strictness_index+1) strictness_index strictness strictness_list = compute_args_strictness strictness_index strictness strictness_list (array_index+1) new_arg_types_array /* * GENERATE FUSED FUNCTION */ generateFunction :: !SymbIdent !FunDef ![ConsClass] ![Bool] !{! Producer} !FunctionInfoPtr !ReadOnlyTI !Int !*TransformInfo -> (!Index, !Int, !*TransformInfo) generateFunction app_symb fd=:{fun_body = TransformedBody {tb_args,tb_rhs},fun_info = {fi_group_index}} cc_args cc_linear_bits prods fun_def_ptr ro n_extra ti=:{ti_var_heap,ti_next_fun_nr,ti_new_functions,ti_fun_heap,ti_symbol_heap,ti_fun_defs, ti_type_heaps,ti_cons_args,ti_cleanup_info, ti_type_def_infos} // | False--->("generating new function",fd.fun_ident.id_name,"->",ti_next_fun_nr,prods,tb_args) = undef /* | False-!->("generating new function",fd.fun_ident.id_name,"->",ti_next_fun_nr) = undef | False-!->("with type",fd.fun_type) = undef | False-!->("producers:",II_Node prods nilPtr II_Empty II_Empty,("cc_args",cc_args,("cc_linear_bits",cc_linear_bits))) = undef | False-!->("body:",tb_args, tb_rhs) = undef */ #!(fi_group_index, ti_cons_args, ti_fun_defs, ti_fun_heap) = max_group_index 0 prods ro.ro_main_dcl_module_n fi_group_index ti_fun_defs ti_fun_heap ti_cons_args # (Yes consumer_symbol_type) = fd.fun_type (function_producer_types, ti_fun_defs, ti_fun_heap) = iFoldSt (accum_function_producer_type prods ro) 0 (size prods) ([], ti_fun_defs, ti_fun_heap) consumer_symbol_type = strip_universal_quantor consumer_symbol_type function_producer_types = mapOpt strip_universal_quantor function_producer_types (sound_consumer_symbol_type, (ti_type_heaps, ti_type_def_infos)) = add_propagation_attributes` ro.ro_common_defs consumer_symbol_type (ti_type_heaps, ti_type_def_infos) (opt_sound_function_producer_types, (ti_type_heaps, ti_type_def_infos)) = mapSt (add_propagation_attributes ro.ro_common_defs) function_producer_types (ti_type_heaps, ti_type_def_infos) (opt_sound_function_producer_types, ti_type_heaps) = mapSt copy_opt_symbol_type opt_sound_function_producer_types ti_type_heaps sound_function_producer_types // nog even voor determine args.... = [x \\ Yes x <- opt_sound_function_producer_types] # ({st_attr_vars,st_args,st_args_strictness,st_result,st_attr_env}) = sound_consumer_symbol_type (class_types, ti_fun_defs, ti_fun_heap) = iFoldSt (accum_class_type prods ro) 0 (size prods) ([], ti_fun_defs, ti_fun_heap) (type_vars_in_class_types, th_vars) = mapSt getTypeVars class_types ti_type_heaps.th_vars all_involved_types = class_types ++ (flatten (map (\{st_args, st_result}-> [st_result:st_args]) [sound_consumer_symbol_type:sound_function_producer_types])) // | False ---> ("all_involved_types",app_symb,all_involved_types) = undef # (propagating_cons_vars, th_vars) = collectPropagatingConsVars all_involved_types th_vars all_type_vars = flatten [st_vars \\ {st_vars} <- [sound_consumer_symbol_type:sound_function_producer_types]] ++flatten type_vars_in_class_types // | False -!-> ("all_type_vars",all_type_vars) = undef # (nr_of_all_type_vars, th_vars) = foldSt bind_to_temp_type_var all_type_vars (0, th_vars) subst = createArray nr_of_all_type_vars TE (next_attr_nr, th_attrs) = foldSt bind_to_temp_attr_var st_attr_vars (FirstAttrVar, ti_type_heaps.th_attrs) ti_type_heaps = { ti_type_heaps & th_attrs = th_attrs, th_vars = th_vars } // | False-!->("before substitute", st_args, "->", st_result) = undef # ((st_args,st_result), ti_type_heaps) = substitute (st_args,st_result) ti_type_heaps // | False-!->("after substitute", st_args, "->", st_result) = undef // determine args... # das = { das_vars = [] // , das_arg_types = { [el] \\ el <- st_args } , das_arg_types = st_args_array st_args st_args_strictness , das_next_attr_nr = next_attr_nr , das_new_linear_bits = [] , das_new_cons_args = [] , das_uniqueness_requirements = [] , das_subst = subst , das_let_bindings = ([],[],[],[]) , das_type_heaps = ti_type_heaps , das_symbol_heap = ti_symbol_heap , das_fun_defs = ti_fun_defs , das_fun_heap = ti_fun_heap , das_var_heap = ti_var_heap , das_cons_args = ti_cons_args , das_predef = ti.ti_predef_symbols } # das = determine_args cc_linear_bits cc_args 0 prods opt_sound_function_producer_types tb_args ro das uvar = [arg \\ prod <-: prods & arg <- tb_args | isUnused prod] with isUnused PR_Unused = True isUnused _ = False new_fun_args = das.das_vars new_arg_types_array = das.das_arg_types next_attr_nr = das.das_next_attr_nr new_linear_bits = das.das_new_linear_bits new_cons_args = das.das_new_cons_args uniqueness_requirements = das.das_uniqueness_requirements subst = das.das_subst let_bindings = das.das_let_bindings ti_type_heaps = das.das_type_heaps ti_symbol_heap = das.das_symbol_heap ti_fun_defs = das.das_fun_defs ti_fun_heap = das.das_fun_heap ti_var_heap = das.das_var_heap ti_cons_args = das.das_cons_args ti_predef_symbols = das.das_predef new_fun_arity = length new_fun_args | SwitchArityChecks (new_fun_arity > 32) False # new_gen_fd = { gf_fun_def = fd , gf_instance_info = II_Empty , gf_cons_args = {cc_args = [], cc_size = 0, cc_linear_bits=[], cc_producer = False} , gf_fun_index = -1 } # ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function new_gen_fd) # ti = { ti & ti_type_heaps = ti_type_heaps, ti_symbol_heap = ti_symbol_heap, ti_fun_defs = ti_fun_defs , ti_fun_heap = ti_fun_heap, ti_var_heap = ti_var_heap, ti_cons_args = ti_cons_args, ti_type_def_infos = ti_type_def_infos , ti_predef_symbols = ti_predef_symbols } | ro.ro_transform_fusion # ti = { ti & ti_error_file = ti.ti_error_file <<< "Possibly missed fusion oppurtunity: Function Arity > 32 " <<< ro.ro_fun_root.symb_ident.id_name <<< "\n"} = (-1,new_fun_arity,ti) = (-1,new_fun_arity,ti) # new_arg_types = flatten [ ats_types \\ {ats_types}<-:new_arg_types_array ] new_args_strictness = compute_args_strictness new_arg_types_array cons_vars = createArray (inc (BITINDEX nr_of_all_type_vars)) 0 (cons_vars, th_vars) = foldSt set_cons_var_bit propagating_cons_vars (cons_vars, ti_type_heaps.th_vars) // | False--->("subst before", [el\\el<-:subst], "cons_vars", [el\\el<-:cons_vars]) = undef # ti_type_heaps = { ti_type_heaps & th_vars = th_vars } # (subst, next_attr_nr, ti_type_heaps, ti_type_def_infos) = liftSubstitution subst ro.ro_common_defs cons_vars next_attr_nr ti_type_heaps ti_type_def_infos // | False--->("subst after lifting", [el\\el<-:subst]) = undef # (consumer_attr_inequalities, th_attrs) = mapSt substitute_attr_inequality st_attr_env ti_type_heaps.th_attrs ti_type_heaps = { ti_type_heaps & th_attrs = th_attrs } coercions = { coer_offered = {{ CT_Empty \\ i <- [0 .. next_attr_nr - 1] } & [AttrMulti] = CT_NonUnique } , coer_demanded = {{ CT_Empty \\ i <- [0 .. next_attr_nr - 1] } & [AttrUni] = CT_Unique } } coercions = foldSt new_inequality consumer_attr_inequalities coercions coercions = foldSt (\{ur_attr_ineqs} coercions -> foldSt new_inequality ur_attr_ineqs coercions) uniqueness_requirements coercions (subst, coercions, ti_type_def_infos, ti_type_heaps) = foldSt (coerce_types ro.ro_common_defs cons_vars) uniqueness_requirements (subst, coercions, ti_type_def_infos, ti_type_heaps) # ([st_result:new_arg_types], (coercions, subst, ti_type_heaps, ti_type_def_infos)) = mapSt (expand_type ro.ro_common_defs cons_vars) [st_result:new_arg_types] (coercions, subst, ti_type_heaps, ti_type_def_infos) // | False-!->("unified type", new_arg_types, "->", st_result) = undef // | False-!->("coercions", readableCoercions coercions) = undef # (fresh_type_vars_array,ti_type_heaps) = accTypeVarHeap (create_fresh_type_vars nr_of_all_type_vars) ti_type_heaps (attr_partition, demanded) = partitionateAttributes coercions.coer_offered coercions.coer_demanded // to eliminate circles in the attribute inequalities graph that was built during "det ermine_arg s" (fresh_attr_vars, ti_type_heaps) = accAttrVarHeap (create_fresh_attr_vars demanded (size demanded)) ti_type_heaps // the attribute variables stored in the "demanded" graph are represented as integers: // prepare to replace them by pointers ((fresh_arg_types, fresh_result_type), used_attr_vars) = replaceIntegers (new_arg_types, st_result) (fresh_type_vars_array, fresh_attr_vars, attr_partition) (createArray (size demanded) False) // replace the integer-attribute-variables with pointer-attribute-variables or TA_Unique or TA_Multi final_coercions = removeUnusedAttrVars demanded [i \\ i<-[0..(size used_attr_vars)-1] | not used_attr_vars.[i]] // the attribute inequalities graph may have contained unused attribute variables. (all_attr_vars2, ti_type_heaps) = accAttrVarHeap (getAttrVars (fresh_arg_types, fresh_result_type)) ti_type_heaps all_attr_vars = [ attr_var \\ TA_Var attr_var <- [fresh_attr_vars.[i] \\ i<-[0..(size used_attr_vars)-1] | used_attr_vars.[i]]] # (all_fresh_type_vars, ti_type_heaps) = accTypeVarHeap (getTypeVars (fresh_arg_types, fresh_result_type)) ti_type_heaps new_fun_type = Yes { st_vars = all_fresh_type_vars , st_args = fresh_arg_types , st_args_strictness=new_args_strictness , st_arity = new_fun_arity , st_result = fresh_result_type , st_context = [] , st_attr_vars = all_attr_vars , st_attr_env = coercionsToAttrEnv fresh_attr_vars final_coercions } /* DvA... STRICT_LET // DvA: moet hier rekening houden met strictness dwz alleen safe args expanderen en rest in stricte let genereren... (tb_rhs,ti_symbol_heap,strict_free_vars) = case let_bindings of ([],[],_,_) -> (tb_rhs,ti_symbol_heap,[]) (s,l,st,lt) # let_type = st++lt # (new_info_ptr, ti_symbol_heap) = newPtr (EI_LetType let_type) ti_symbol_heap # new_expr = Let { let_strict_binds = s , let_lazy_binds = l , let_expr = tb_rhs , let_info_ptr = new_info_ptr , let_expr_position = NoPos } # strict_free_vars = [lb_dst \\ {lb_dst} <- s] -> (new_expr,ti_symbol_heap,strict_free_vars) ...DvA */ new_fd_expanding = { fd & fun_body = Expanding new_fun_args, fun_arity = new_fun_arity,fun_type=new_fun_type, fun_info.fi_group_index = fi_group_index /* DvA... STRICT_LET ,fun_info.fi_free_vars = strict_free_vars++fd.fun_info.fi_free_vars ...DvA */ } new_fd_cons_args // = {cc_args = new_cons_args, cc_size = length new_cons_args, cc_linear_bits=new_linear_bits, cc_producer = False} = {cc_args = repeatn (length new_cons_args) CPassive, cc_size = length new_cons_args, cc_linear_bits=new_linear_bits, cc_producer = False} new_gen_fd = { gf_fun_def = new_fd_expanding, gf_instance_info = II_Empty, gf_fun_index = ti_next_fun_nr, gf_cons_args = new_fd_cons_args } ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function new_gen_fd) (subst, _) = iFoldSt (replace_integers_in_substitution (fresh_type_vars_array, fresh_attr_vars, attr_partition)) 0 nr_of_all_type_vars (subst, createArray (size demanded) False) // replace the integer-attribute-variables with pointer-attribute-variables or TA_Unique or TA_Multi in subst (_, th_vars) = foldSt (\{tv_info_ptr} (i, th_vars) -> case subst.[i] of TE -> (i+1, writePtr tv_info_ptr (TVI_Type (TV fresh_type_vars_array.[i])) th_vars) _ -> (i+1, writePtr tv_info_ptr (TVI_Type subst.[i]) th_vars)) all_type_vars (0, ti_type_heaps.th_vars) us = { us_var_heap = ti_var_heap , us_symbol_heap = ti_symbol_heap , us_opt_type_heaps = Yes { ti_type_heaps & th_vars = th_vars } , us_cleanup_info = ti_cleanup_info , us_local_macro_functions = No } ui = { ui_handle_aci_free_vars = RemoveThem } // | False ---> ("before unfold:", tb_rhs) = undef # (tb_rhs, {us_var_heap,us_symbol_heap,us_opt_type_heaps=Yes ti_type_heaps, us_cleanup_info}) = unfold tb_rhs ui us // | False ---> ("unfolded:", tb_rhs) = undef //*999 # us_var_heap = fold2St store_arg_type_info new_fun_args fresh_arg_types us_var_heap with store_arg_type_info {fv_info_ptr} a_type ti_var_heap = setExtendedVarInfo fv_info_ptr (EVI_VarType a_type) ti_var_heap //*/ # ro_fun= { symb_ident = fd.fun_ident, symb_kind = SK_GeneratedFunction fun_def_ptr ti_next_fun_nr } # ro_root_case_mode = case tb_rhs of Case _ -> RootCase _ -> NotRootCase # (args1,resto,restn,us_var_heap) = take1 tb_args new_fun_args us_var_heap with take1 [o:os] [n:ns] us_var_heap # (vi,us_var_heap) = readVarInfo o.fv_info_ptr us_var_heap # eq = case vi of VI_Variable _ fip -> fip == n.fv_info_ptr _ -> False | eq # (ts,os,ns,us_var_heap) = take1 os ns us_var_heap = ([o:ts],os,ns,us_var_heap) = ([],[o:os],[n:ns],us_var_heap) take1 os ns us_var_heap = ([],os,ns,us_var_heap) # (args2o,args2n,resto,restn,us_var_heap) = take2 resto restn us_var_heap with take2 [] [] us_var_heap = ([],[],[],[],us_var_heap) take2 os ns us_var_heap # (os`,us_var_heap) = extend os us_var_heap # os`` = map fst os` # ns`` = map (\{fv_info_ptr}->fv_info_ptr) ns # condO = \(o,_) -> not (isMember o ns``) # condN = \{fv_info_ptr} -> not (isMember fv_info_ptr os``) # (ao`,ro`) = (takeWhile condO os`, dropWhile condO os`) # (an,rn) = (takeWhile condN ns, dropWhile condN ns) # ao = shrink ao` # ro = shrink ro` = (ao,an,ro,rn,us_var_heap) where extend os uvh = seqList (map ext os) uvh ext o uvh # (vi,uvh) = readVarInfo o.fv_info_ptr uvh = case vi of VI_Variable _ fip -> ((fip,o),uvh) _ -> ((nilPtr,o),uvh) shrink as = map snd as isMember x [hd:tl] | isNilPtr x = False | isNilPtr hd = isMember x tl = hd==x || isMember x tl isMember x [] = False # (args3,resto,restn,us_var_heap) = take1 resto restn us_var_heap with take1 [o:os] [n:ns] us_var_heap # (vi,us_var_heap) = readVarInfo o.fv_info_ptr us_var_heap # eq = case vi of VI_Variable _ fip -> fip == n.fv_info_ptr _ -> False | eq # (ts,os,ns,us_var_heap) = take1 os ns us_var_heap = ([o:ts],os,ns,us_var_heap) = ([],[o:os],[n:ns],us_var_heap) take1 os ns us_var_heap = ([],os,ns,us_var_heap) /* take1 [] [] = ([],[],[]) take1 [o:os] [n:ns] | o.fv_info_ptr == n.fv_info_ptr # (ts,os,ns) = take1 os ns = ([o:ts],os,ns) = ([],[o:os],[n:ns]) */ | False -!-> ("genFun",(tb_args,new_fun_args),args1,(args2o,args2n),args3,(resto,restn)) = undef | not (isEmpty resto) = abort "genFun:resto" | not (isEmpty restn) = abort "genFun:restn" # ro = { ro & ro_root_case_mode = ro_root_case_mode, ro_fun_root = ro_fun, ro_fun_case = ro_fun, ro_fun_orig = app_symb, ro_fun_args = new_fun_args, ro_fun_vars = uvar ++ [arg \\ arg <- new_fun_args & i <- [0..] | arg_is_strict i new_args_strictness], // evt ++ verwijderde stricte arg... ro_fun_geni = (length args1,length args2n) } // ---> ("genfun uvars",uvar,[arg \\ arg <- new_fun_args & i <- [0..] | arg_is_strict i new_args_strictness]) // | False ---> ("transform generated function:",ti_next_fun_nr,ro_root_case_mode) = undef // | False ---> ("transforming new function:",ti_next_fun_nr,tb_rhs) = undef // | False -!-> ("transforming new function:",tb_rhs) = undef # ti = { ti & ti_var_heap = us_var_heap, ti_fun_heap = ti_fun_heap, ti_symbol_heap = us_symbol_heap, ti_next_fun_nr = inc ti_next_fun_nr, ti_type_def_infos = ti_type_def_infos, ti_new_functions = [fun_def_ptr : ti_new_functions], ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_cleanup_info = us_cleanup_info, ti_cons_args = ti_cons_args, ti_predef_symbols = ti_predef_symbols } # ti = arity_warning "generateFunction" fd.fun_ident.id_name ti_next_fun_nr new_fun_arity ti # (tb_rhs,ti) = case n_extra of 0 -> (tb_rhs,ti) _ # act_args = map f2b (reverse (take n_extra (reverse new_fun_args))) with f2b { fv_ident, fv_info_ptr } = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = nilPtr } -> add_args_to_fun_body act_args fresh_result_type tb_rhs ro ti (new_fun_rhs, ti) = transform tb_rhs ro ti new_fd = { new_fd_expanding & fun_body = TransformedBody {tb_args = new_fun_args, tb_rhs = new_fun_rhs} } // | False ---> ("generated function", new_fd) = undef # new_gen_fd = { new_gen_fd & gf_fun_def = new_fd, gf_cons_args = new_fd_cons_args} # ti = { ti & ti_fun_heap = ti.ti_fun_heap <:= (fun_def_ptr, FI_Function new_gen_fd) } = (ti_next_fun_nr, new_fun_arity, ti) where st_args_array :: ![AType] !StrictnessList -> .{#ATypesWithStrictness} st_args_array st_args args_strictness # strict1=Strict 1 = { {ats_types=[el],ats_strictness=if (arg_is_strict i args_strictness) strict1 NotStrict} \\ i<-[0..] & el <- st_args } is_dictionary :: !.AType !{#{#.TypeDefInfo}} -> Bool is_dictionary {at_type=TA {type_index} _} es_td_infos #! td_infos_of_module=es_td_infos.[type_index.glob_module] = type_index.glob_object>=size td_infos_of_module || td_infos_of_module.[type_index.glob_object].tdi_group_nr==(-1) is_dictionary _ es_td_infos = False set_cons_var_bit :: !.TypeVar !*(!*{#.Int},!u:(Heap TypeVarInfo)) -> (!.{#Int},!v:(Heap TypeVarInfo)), [u <= v] set_cons_var_bit {tv_info_ptr} (cons_vars, th_vars) # (TVI_Type (TempV i), th_vars) = readPtr tv_info_ptr th_vars = (set_bit i cons_vars, th_vars) copy_opt_symbol_type :: !(Optional .SymbolType) !*TypeHeaps -> (!(Optional .SymbolType),!.TypeHeaps) copy_opt_symbol_type No ti_type_heaps = (No, ti_type_heaps) copy_opt_symbol_type (Yes symbol_type=:{st_vars, st_attr_vars, st_args, st_result, st_attr_env}) ti_type_heaps=:{th_vars, th_attrs} # (fresh_st_vars, th_vars) = mapSt bind_to_fresh_type_variable st_vars th_vars (fresh_st_attr_vars, th_attrs) = mapSt bind_to_fresh_attr_variable st_attr_vars th_attrs ([fresh_st_result:fresh_st_args], ti_type_heaps) = substitute [st_result:st_args] { ti_type_heaps & th_vars = th_vars, th_attrs = th_attrs } (fresh_st_attr_env, ti_type_heaps) = substitute st_attr_env ti_type_heaps = (Yes { symbol_type & st_vars = fresh_st_vars, st_attr_vars = fresh_st_attr_vars, st_args = fresh_st_args, st_result = fresh_st_result, st_attr_env = fresh_st_attr_env}, ti_type_heaps) add_propagation_attributes :: !{#.CommonDefs} !(Optional .SymbolType) !*(!*TypeHeaps,!*{#*{#.TypeDefInfo}}) -> (!(Optional .SymbolType),!(!.TypeHeaps,!{#.{#TypeDefInfo}})) add_propagation_attributes common_defs No state = (No, state) add_propagation_attributes common_defs (Yes st) state # (st, state) = add_propagation_attributes` common_defs st state = (Yes st, state) add_propagation_attributes` :: !{#.CommonDefs} !.SymbolType !*(!*TypeHeaps,!*{#*{#.TypeDefInfo}}) -> (!.SymbolType,!(!.TypeHeaps,!{#.{#TypeDefInfo}})) add_propagation_attributes` common_defs st=:{st_args, st_result, st_attr_env, st_attr_vars} (type_heaps, type_def_infos) # ps = { prop_type_heaps = type_heaps , prop_td_infos = type_def_infos , prop_attr_vars = st_attr_vars , prop_attr_env = st_attr_env , prop_error = No } # ([sound_st_result:sound_st_args], ps) // = add_propagation_attributes_to_atypes common_defs [st_result:st_args] ps = mapSt (add_propagation_attributes_to_atype common_defs) [st_result:st_args] ps sound_symbol_type = { st & st_args = sound_st_args , st_result = sound_st_result , st_attr_env = ps.prop_attr_env , st_attr_vars = ps.prop_attr_vars } state = (ps.prop_type_heaps, ps.prop_td_infos) = (sound_symbol_type, state) add_propagation_attributes_to_atype :: !{#.CommonDefs} !.AType !*PropState -> (!AType,!.PropState) add_propagation_attributes_to_atype modules type ps | is_dictionary type ps.prop_td_infos = (type, ps) # (type, prop_class, ps) = addPropagationAttributesToAType modules type ps = (type, ps) // add_propagation_attributes_to_atypes :: {#CommonDefs} ![AType] !*PropState -> (![AType],!*PropState) // add_propagation_attributes_to_atypes modules types ps // = mapSt (add_propagation_attributes_to_atype modules) types ps accum_class_type :: !{!.Producer} !.ReadOnlyTI !.Int !(!u:[v:AType],!.b,!.c) -> (!w:[x:AType],!.b,!.c), [u <= w,v <= x] accum_class_type prods ro i (type_accu, ti_fun_defs, ti_fun_heap) = case prods.[i] of PR_Class _ _ class_type -> ([{empty_atype & at_type = class_type} : type_accu ], ti_fun_defs, ti_fun_heap) _ -> (type_accu, ti_fun_defs, ti_fun_heap) accum_function_producer_type :: !{!.Producer} !.ReadOnlyTI !.Int !*(!u:[v:(Optional .SymbolType)],!*{#.FunDef},!*(Heap FunctionInfo)) -> (!w:[x:(Optional SymbolType)],!.{#FunDef},!.(Heap FunctionInfo)), [u <= w,v <= x] accum_function_producer_type prods ro i (type_accu, ti_fun_defs, ti_fun_heap) = case prods.[size prods-i-1] of PR_Empty -> ([No:type_accu], ti_fun_defs, ti_fun_heap) PR_Class _ _ class_type -> ([No:type_accu], ti_fun_defs, ti_fun_heap) PR_Unused -> ([No:type_accu], ti_fun_defs, ti_fun_heap) producer # (symbol,_) = get_producer_symbol producer (symbol_type, ti_fun_defs, ti_fun_heap) = get_producer_type symbol ro ti_fun_defs ti_fun_heap -> ([Yes symbol_type:type_accu], ti_fun_defs, ti_fun_heap) collectPropagatingConsVars :: ![AType] !*(Heap TypeVarInfo) -> (!.[TypeVar],!.(Heap TypeVarInfo)) collectPropagatingConsVars type th_vars # th_vars = performOnTypeVars initializeToTVI_Empty type th_vars = performOnTypeVars collect_unencountered_cons_var type ([], th_vars) where collect_unencountered_cons_var :: !.TypeAttribute !u:TypeVar !*(!v:[w:TypeVar],!*(Heap TypeVarInfo)) -> (!x:[y:TypeVar],!.(Heap TypeVarInfo)), [v <= x,w u <= y] collect_unencountered_cons_var TA_MultiOfPropagatingConsVar tv=:{tv_info_ptr} (cons_var_accu, th_vars) # (tvi, th_vars) = readPtr tv_info_ptr th_vars = case tvi of TVI_Empty -> ([tv:cons_var_accu], writePtr tv_info_ptr TVI_Used th_vars) TVI_Used -> (cons_var_accu, th_vars) collect_unencountered_cons_var _ _ state = state replace_integers_in_substitution :: (!{!.TypeVar},!{!.TypeAttribute},!{#.Int}) !.Int !*(!*{!Type},!*{#.Bool}) -> (!.{!Type},!.{#Bool}) replace_integers_in_substitution replace_input i (subst, used) # (subst_i, subst) = subst![i] (subst_i, used) = replaceIntegers subst_i replace_input used = ({ subst & [i] = subst_i }, used) coerce_types common_defs cons_vars {ur_offered, ur_demanded} (subst, coercions, ti_type_def_infos, ti_type_heaps) # (opt_error_info, subst, coercions, ti_type_def_infos, ti_type_heaps) = determineAttributeCoercions ur_offered ur_demanded True subst coercions common_defs cons_vars ti_type_def_infos ti_type_heaps = case opt_error_info of Yes _ -> abort "sanity check nr 5623 failed in module trans" No -> (subst, coercions, ti_type_def_infos, ti_type_heaps) expand_type :: !{#.CommonDefs} !{#.Int} !.AType !*(!*Coercions,!u:{!.Type},!*TypeHeaps,!*{#*{#.TypeDefInfo}}) -> (!AType,!(!.Coercions,!v:{!Type},!.TypeHeaps,!{#.{#TypeDefInfo}})), [u <= v] expand_type ro_common_defs cons_vars atype (coercions, subst, ti_type_heaps, ti_type_def_infos) | is_dictionary atype ti_type_def_infos # (_, atype, subst) = arraySubst atype subst = (atype, (coercions, subst, ti_type_heaps, ti_type_def_infos)) # es = { es_type_heaps = ti_type_heaps, es_td_infos = ti_type_def_infos } (_, btype, (subst, es)) = expandType ro_common_defs cons_vars atype (subst, es) { es_type_heaps = ti_type_heaps, es_td_infos = ti_type_def_infos } = es # cs = { crc_type_heaps = ti_type_heaps, crc_coercions = coercions, crc_td_infos = ti_type_def_infos } (_, cs) = coerce PositiveSign ro_common_defs cons_vars [] btype btype cs { crc_type_heaps = ti_type_heaps, crc_coercions = coercions, crc_td_infos = ti_type_def_infos } = cs = (btype, (coercions, subst, ti_type_heaps, ti_type_def_infos)) // get_producer_type retrieves the type of symbol get_producer_type :: !SymbIdent !.ReadOnlyTI !*{#FunDef} !*FunctionHeap -> (!SymbolType,!*{#FunDef},!*FunctionHeap) get_producer_type {symb_kind=SK_Function {glob_module, glob_object}} ro fun_defs fun_heap | glob_module == ro.ro_main_dcl_module_n # ({fun_type=Yes symbol_type, fun_info={fi_properties}}, fun_defs) = fun_defs![glob_object] | fi_properties bitand FI_HasTypeSpec <> 0 # (_, symbol_type) = removeAnnotations symbol_type = (symbol_type, fun_defs, fun_heap) = (symbol_type, fun_defs, fun_heap) # {ft_type} = ro.ro_imported_funs.[glob_module].[glob_object] (_, ft_type=:{st_args,st_args_strictness}) = removeAnnotations ft_type new_st_args = addTypesOfDictionaries ro.ro_common_defs ft_type.st_context st_args new_st_arity = length new_st_args new_st_args_strictness = insert_n_strictness_values_at_beginning (new_st_arity-length st_args) st_args_strictness = ({ft_type & st_args = new_st_args, st_args_strictness = new_st_args_strictness, st_arity = new_st_arity, st_context = [] }, fun_defs, fun_heap) get_producer_type {symb_kind=SK_LocalMacroFunction glob_object} ro fun_defs fun_heap # ({fun_type=Yes symbol_type}, fun_defs) = fun_defs![glob_object] = (symbol_type, fun_defs, fun_heap) get_producer_type {symb_kind=SK_GeneratedFunction fun_ptr _} ro fun_defs fun_heap # (FI_Function {gf_fun_def={fun_type=Yes symbol_type}}, fun_heap) = readPtr fun_ptr fun_heap = (symbol_type, fun_defs, fun_heap) get_producer_type {symb_kind=SK_Constructor {glob_module, glob_object}} ro fun_defs fun_heap # cons_defs = ro.ro_common_defs.[glob_module].com_cons_defs # {cons_type} = cons_defs.[glob_object] # (_,cons_type) = removeAnnotations cons_type // necessary??? = (cons_type, fun_defs, fun_heap) //@ determine_args :: *DetermineArgsState = { das_vars :: ![FreeVar] , das_arg_types :: !*{#ATypesWithStrictness} , das_next_attr_nr :: !Int , das_new_linear_bits :: ![Bool] , das_new_cons_args :: ![ConsClass] , das_uniqueness_requirements :: ![UniquenessRequirement] , das_subst :: !*{!Type} , das_let_bindings :: !(![LetBind],![LetBind],![AType],![AType]) // DvA: only used in strict_let variant , das_type_heaps :: !*TypeHeaps , das_symbol_heap :: !*ExpressionHeap // unused... , das_fun_defs :: !*{#FunDef} , das_fun_heap :: !*FunctionHeap , das_var_heap :: !*VarHeap , das_cons_args :: !*{!ConsClasses} , das_predef :: !*PredefinedSymbols } determine_args :: ![Bool] ![ConsClass] !Index !{!Producer} ![Optional SymbolType] ![FreeVar] !ReadOnlyTI !*DetermineArgsState -> *DetermineArgsState determine_args _ [] prod_index producers prod_atypes forms _ das=:{das_var_heap} # (vars, das_var_heap) = new_variables forms das_var_heap = {das & das_vars = vars, das_var_heap = das_var_heap} where new_variables [] var_heap = ([], var_heap) new_variables [form=:{fv_ident,fv_info_ptr}:forms] var_heap # (vars, var_heap) = new_variables forms var_heap (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ([{ form & fv_info_ptr = new_info_ptr } : vars], writeVarInfo fv_info_ptr (VI_Variable fv_ident new_info_ptr) var_heap) determine_args [linear_bit : linear_bits] [cons_arg : cons_args] prod_index producers [prod_atype:prod_atypes] [form : forms] input das # das = determine_args linear_bits cons_args (inc prod_index) producers prod_atypes forms input das // # producer = if (cons_arg == CActive) (producers.[prod_index]) PR_Empty # producer = case cons_arg of CActive -> producers.[prod_index] CUnusedStrict -> producers.[prod_index] CUnusedLazy -> producers.[prod_index] _ -> PR_Empty = determine_arg producer prod_atype form prod_index ((linear_bit,cons_arg), input) das determine_arg :: !Producer .(Optional SymbolType) !FreeVar .Int !(!(!Bool,!ConsClass),!ReadOnlyTI) !*DetermineArgsState -> *DetermineArgsState determine_arg PR_Empty _ form=:{fv_ident,fv_info_ptr} _ ((linear_bit,cons_arg), _) das=:{das_var_heap} # (new_info_ptr, das_var_heap) = newPtr VI_Empty das_var_heap # das_var_heap = writeVarInfo fv_info_ptr (VI_Variable fv_ident new_info_ptr) das_var_heap = { das & das_vars = [{ form & fv_info_ptr = new_info_ptr } : das.das_vars ] , das_new_linear_bits = [ linear_bit : das.das_new_linear_bits ] , das_new_cons_args = [ cons_arg : das.das_new_cons_args ] , das_var_heap = das_var_heap } determine_arg PR_Unused _ form=:{fv_ident,fv_info_ptr} prod_index (_,ro) das=:{das_var_heap} # no_arg_type = { ats_types= [], ats_strictness = NotStrict } = { das & das_arg_types.[prod_index] = no_arg_type } determine_arg (PR_Class class_app free_vars_and_types class_type) _ {fv_info_ptr,fv_ident} prod_index (_,ro) das=:{das_arg_types, das_subst, das_type_heaps, das_predef} # (ws_arg_type, das_arg_types) = das_arg_types![prod_index] # {ats_types=[arg_type:_]} = ws_arg_type (int_class_type, das_type_heaps) = substitute class_type das_type_heaps class_atype = { empty_atype & at_type = int_class_type } type_input = { ti_common_defs = ro.ro_common_defs , ti_functions = ro.ro_imported_funs , ti_main_dcl_module_n = ro.ro_main_dcl_module_n } // AA: Dummy generic dictionary does not unify with corresponding class dictionary. // Make it unify # ({pds_module,pds_def},das_predef) = das_predef![PD_TypeGenericDict] # genericGlobalIndex = {glob_module = pds_module, glob_object = pds_def} # (succ, das_subst, das_type_heaps) //AA: = unify class_atype arg_type type_input das_subst das_type_heaps = unify_dict class_atype arg_type type_input das_subst das_type_heaps with unify_dict class_atype=:{at_type=TA type_symb1 args1} arg_type=:{at_type=TA type_symb2 args2} | type_symb1 == type_symb2 = unify class_atype arg_type // FIXME: check indexes, not names. Need predefs for that. // | type_symb1.type_ident.id_name == "GenericDict" | type_symb1.type_index == genericGlobalIndex = unify {class_atype & at_type = TA type_symb2 args1} arg_type // | type_symb2.type_ident.id_name == "GenericDict" | type_symb2.type_index == genericGlobalIndex = unify class_atype {arg_type & at_type = TA type_symb1 args2} unify_dict class_atype arg_type = unify class_atype arg_type | not succ = abort ("sanity check nr 93 in module trans failed\n"--->(class_atype,"\n", arg_type)) # (free_vars_and_types,das_type_heaps) = mapSt subFVT free_vars_and_types das_type_heaps with subFVT (fv,ty) th # (ty`,th`) = substitute ty th = ((fv,ty`),th`) # ws_ats_types = [ { empty_atype & at_type = at_type } \\ (_, at_type) <- free_vars_and_types] # ws_arg_type` = {ats_types= ws_ats_types, ats_strictness = first_n_strict (length free_vars_and_types) } = {das & das_vars = mapAppend (\({var_info_ptr,var_ident}, _) -> { fv_ident = var_ident, fv_info_ptr = var_info_ptr, fv_def_level = NotALevel, fv_count = 0 }) free_vars_and_types das.das_vars , das_arg_types = {das_arg_types & [prod_index] = ws_arg_type` } , das_new_linear_bits = mapAppend (\_ -> True) free_vars_and_types das.das_new_linear_bits , das_new_cons_args = mapAppend (\_ -> CActive) free_vars_and_types das.das_new_cons_args , das_subst = das_subst , das_type_heaps = das_type_heaps , das_var_heap = writeVarInfo fv_info_ptr (VI_Dictionary class_app.app_symb class_app.app_args class_type) das.das_var_heap , das_predef = das_predef } determine_arg producer (Yes {st_args, st_args_strictness, st_result, st_attr_vars, st_context, st_attr_env, st_arity}) {fv_info_ptr,fv_ident} prod_index ((linear_bit, _),ro) das=:{das_subst,das_type_heaps,das_fun_defs,das_fun_heap,das_var_heap,das_cons_args,das_arg_types,das_next_attr_nr} # {th_vars, th_attrs} = das_type_heaps # (symbol,symbol_arity) = get_producer_symbol producer curried = case producer of (PR_Curried _ _) -> True; _ -> False; #! size_fun_defs = size das_fun_defs # ({cc_args, cc_linear_bits}, das_fun_heap, das_cons_args) = calc_cons_args curried symbol symbol_arity das_cons_args linear_bit size_fun_defs das_fun_heap ({ats_types=[arg_type:_],ats_strictness}, das_arg_types) = das_arg_types![prod_index] (das_next_attr_nr, th_attrs) = foldSt bind_to_temp_attr_var st_attr_vars (das_next_attr_nr, th_attrs) // prepare for substitute calls ((st_args, st_result), das_type_heaps) = substitute (st_args, st_result) { das_type_heaps & th_vars = th_vars, th_attrs = th_attrs } nr_of_applied_args = symbol_arity (application_type, attr_env, das_next_attr_nr) = build_application_type st_arity (length st_context) st_result st_args nr_of_applied_args [] das_next_attr_nr type_input = { ti_common_defs = ro.ro_common_defs , ti_functions = ro.ro_imported_funs , ti_main_dcl_module_n = ro.ro_main_dcl_module_n } # (succ, das_subst, das_type_heaps) = unify application_type arg_type type_input das_subst das_type_heaps | not succ | False ---> ("94",application_type,arg_type,symbol) = undef = abort "sanity check nr 94 in module trans failed\n" # (attr_inequalities, das_type_heaps) = accAttrVarHeap (mapSt substitute_attr_inequality st_attr_env) das_type_heaps new_uniqueness_requirement = { ur_offered = application_type , ur_demanded = arg_type // , ur_attr_ineqs = attr_inequalities , ur_attr_ineqs = attr_inequalities ++ attr_env } (opt_body, var_names, das_fun_defs, das_fun_heap) = case producer of (PR_Constructor {symb_kind=SK_Constructor {glob_module}} arity _) -> (NoBody, repeatn arity { id_name = "_x", id_info = nilPtr }, das_fun_defs, das_fun_heap) (PR_Curried {symb_kind=SK_Function {glob_module}} arity) | glob_module <> ro.ro_main_dcl_module_n // we do not have good names for the formal variables of that function: invent some -> (NoBody, repeatn arity { id_name = "_x", id_info = nilPtr }, das_fun_defs, das_fun_heap) (PR_Curried _ arity) # ({fun_body}, das_fun_defs, das_fun_heap) = get_fun_def symbol.symb_kind ro.ro_main_dcl_module_n das_fun_defs das_fun_heap -> case fun_body of (TransformedBody tb) -> (NoBody, take nr_of_applied_args [ fv_ident \\ {fv_ident}<-tb.tb_args ], das_fun_defs, das_fun_heap) _ -> (NoBody, repeatn arity { id_name = "_x", id_info = nilPtr }, das_fun_defs, das_fun_heap) _ # ({fun_body}, das_fun_defs, das_fun_heap) = get_fun_def symbol.symb_kind ro.ro_main_dcl_module_n das_fun_defs das_fun_heap -> case fun_body of (TransformedBody tb) -> (fun_body, take nr_of_applied_args [ fv_ident \\ {fv_ident}<-tb.tb_args ], das_fun_defs, das_fun_heap) _ -> abort ("determine_args:not a Transformed Body:"--->("producer",producer)) (form_vars, act_vars, das_var_heap) = build_var_args (reverse var_names) das.das_vars [] das_var_heap (expr_to_unfold, das_var_heap) = case producer of (PR_Constructor symb _ expr) -> (VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr }), das_var_heap) (PR_Curried _ _) -> (VI_Expression (App { app_symb = symbol, app_args = act_vars, app_info_ptr = nilPtr }), das_var_heap) _ // function or generated function # (TransformedBody tb) = opt_body -> (VI_Body symbol tb (take nr_of_applied_args form_vars), das_var_heap) /* DvA... STRICT_LET (expr_to_unfold, das_var_heap, let_bindings) = case arg_type.at_annotation of AN_Strict # (new_info_ptr_l, das_var_heap) = newPtr VI_Empty das_var_heap # free_var_l = { fv_ident = { id_name = "free_l", id_info = nilPtr }, fv_info_ptr = new_info_ptr_l, fv_count = 0, fv_def_level = NotALevel } # act_var_l = Var { var_ident = { id_name = "act_l", id_info = nilPtr }, var_info_ptr = new_info_ptr_l, var_expr_ptr = nilPtr } # bind = {lb_dst = fv, lb_src = act_var_l, lb_position = NoPos} # das_var_heap = writeVarInfo new_info_ptr_l expr_to_unfold das_var_heap # let_bindings = case let_bindings of (s,l,st,lt) -> ([bind:s],l,[arg_type:st],lt) -> (VI_Empty, das_var_heap, let_bindings) _ -> (expr_to_unfold,das_var_heap,let_bindings) ...DvA */ # das_arg_types = { das_arg_types & [prod_index] = {ats_types=take nr_of_applied_args st_args,ats_strictness=st_args_strictness} } = { das & das_vars = form_vars , das_arg_types = das_arg_types , das_next_attr_nr = das_next_attr_nr , das_new_linear_bits = cc_linear_bits ++ das.das_new_linear_bits , das_new_cons_args = cc_args ++ das.das_new_cons_args , das_uniqueness_requirements = [new_uniqueness_requirement:das.das_uniqueness_requirements] , das_subst = das_subst , das_type_heaps = das_type_heaps , das_fun_defs = das_fun_defs , das_fun_heap = das_fun_heap , das_var_heap = writeVarInfo fv_info_ptr expr_to_unfold das_var_heap , das_cons_args = das_cons_args } where build_var_args [] form_vars act_vars var_heap = (form_vars, act_vars, var_heap) build_var_args [new_name:new_names] form_vars act_vars var_heap # (info_ptr, var_heap) = newPtr VI_Empty var_heap form_var = { fv_ident = new_name, fv_info_ptr = info_ptr, fv_count = 0, fv_def_level = NotALevel } act_var = { var_ident = new_name, var_info_ptr = info_ptr, var_expr_ptr = nilPtr } = build_var_args new_names [form_var : form_vars] [Var act_var : act_vars] var_heap calc_cons_args curried {symb_kind} symbol_arity ti_cons_args linear_bit size_fun_defs fun_heap # (cons_size, ti_cons_args) = usize ti_cons_args # (opt_cons_classes, fun_heap, ti_cons_args) = case symb_kind of SK_Function {glob_module, glob_object} | glob_module == ro.ro_main_dcl_module_n && glob_object < cons_size # (cons_args, ti_cons_args) = ti_cons_args![glob_object] -> (Yes cons_args, fun_heap, ti_cons_args) -> (No, fun_heap, ti_cons_args) SK_LocalMacroFunction glob_object | glob_object < cons_size # (cons_args, ti_cons_args) = ti_cons_args![glob_object] -> (Yes cons_args, fun_heap, ti_cons_args) -> (No, fun_heap, ti_cons_args) SK_GeneratedFunction fun_ptr fun_index | fun_index < cons_size # (cons_args, ti_cons_args) = ti_cons_args![fun_index] -> (Yes cons_args, fun_heap, ti_cons_args) | fun_index < size_fun_defs -> abort "sanity check failed in module trans" # (FI_Function {gf_cons_args}, fun_heap) = readPtr fun_ptr fun_heap -> (Yes gf_cons_args, fun_heap, ti_cons_args) SK_Constructor _ -> (No, fun_heap, ti_cons_args) = case opt_cons_classes of Yes cons_classes # cc_args = copy_classes symbol_arity cons_classes.cc_args -> ({ cc_size = symbol_arity , cc_args = cc_args , cc_linear_bits = if curried (repeatn symbol_arity linear_bit) (take symbol_arity cons_classes.cc_linear_bits) , cc_producer = False } , fun_heap, ti_cons_args) No -> ({ cc_size = symbol_arity , cc_args = repeatn symbol_arity CPassive , cc_linear_bits = repeatn symbol_arity linear_bit , cc_producer = False } , fun_heap, ti_cons_args) copy_classes 0 _ = [] copy_classes n [cc:ccs] = case cc of CUnusedStrict -> [CActive:copy_classes (dec n) ccs] CUnusedLazy -> [CActive:copy_classes (dec n) ccs] cc -> [cc:copy_classes (dec n) ccs] /* build_application_type st_arity nr_context_args st_result st_args nr_of_applied_args | st_arity+nr_context_args==nr_of_applied_args = st_result | nr_of_applied_args{at_attribute=attr_approx, at_type=atype1-->atype2}) st_result unapplied_args where has_unique_attribute {at_attribute=TA_Unique} = True has_unique_attribute _ = False */ build_application_type st_arity nr_context_args st_result st_args nr_of_applied_args attr_env attr_store | st_arity+nr_context_args==nr_of_applied_args = (st_result, attr_env, attr_store) | nr_of_applied_args{at_attribute=attr_approx, at_type=atype1-->atype2}) st_result unapplied_args | False ---> ("build",type,type`) = undef // = (type, attr_env, attr_store) = (type`, attr_env`, attr_store`) where has_unique_attribute {at_attribute=TA_Unique} = True has_unique_attribute _ = False */ // DvA: from type.icl... currySymbolType tst_args tst_arity tst_result tst_attr_env req_arity ts_attr_store | tst_arity == req_arity = (tst_result, tst_attr_env, ts_attr_store) # (tst_args, rest_args, is_unique) = split_args req_arity tst_args | is_unique # (type, _, _) = buildCurriedType rest_args tst_result TA_Unique [] 0 = (type, tst_attr_env, ts_attr_store) # tst_attr_env = build_attr_env ts_attr_store tst_args tst_attr_env # (type, tst_attr_env, ts_attr_store) = buildCurriedType rest_args tst_result (TA_TempVar ts_attr_store) tst_attr_env (inc ts_attr_store) = (type, tst_attr_env, ts_attr_store) where split_args 0 args = ([], args, False) split_args n [atype=:{at_attribute} : args] # (left, right, is_unique) = split_args (dec n) args = ([ atype : left ], right, is_unique || attr_is_unique at_attribute) attr_is_unique TA_Unique = True attr_is_unique _ = False build_attr_env cum_attr_var [] attr_env = attr_env build_attr_env cum_attr_var [{at_attribute=(TA_TempVar attr_var)} : args] attr_env # attr_env = [{ ac_demanded = attr_var, ac_offered = cum_attr_var } : attr_env] = build_attr_env cum_attr_var args attr_env build_attr_env cum_attr_var [_ : args] attr_env = build_attr_env cum_attr_var args attr_env buildCurriedType [] type cum_attr attr_env attr_store = (type, attr_env, attr_store) buildCurriedType [at=:{at_attribute}:ats] type cum_attr attr_env attr_store # (next_cum_attr, attr_env, attr_store) = combine_attributes at_attribute cum_attr attr_env attr_store (res_type, attr_env, attr_store) = buildCurriedType ats type next_cum_attr attr_env attr_store = ({at_attribute = cum_attr , at_type = at --> res_type }, attr_env, attr_store) where combine_attributes TA_Unique cum_attr attr_env attr_store = (TA_Unique, attr_env, attr_store) combine_attributes (TA_TempVar attr_var) (TA_TempVar cum_attr_var) attr_env attr_store # attr_env = [{ ac_demanded = cum_attr_var,ac_offered = attr_store } ,{ ac_demanded = attr_var,ac_offered = attr_store } :attr_env] = (TA_TempVar attr_store, attr_env, inc attr_store) combine_attributes (TA_TempVar _) cum_attr attr_env attr_store = (cum_attr, attr_env, attr_store) combine_attributes _ (TA_TempVar cum_attr_var) attr_env attr_store # attr_env = [{ ac_demanded = cum_attr_var,ac_offered = attr_store }:attr_env] = (TA_TempVar attr_store, attr_env, inc attr_store) combine_attributes _ cum_attr attr_env attr_store = (cum_attr, attr_env, attr_store) freshAttrVar attr_var th_attrs # (new_info_ptr, th_attrs) = newPtr AVI_Empty th_attrs = ({ av_ident = NewAttrVarId attr_var, av_info_ptr = new_info_ptr }, th_attrs) //@ max_group_index max_group_index :: !Int !{!Producer} Index Index *{#FunDef} *FunctionHeap *{!ConsClasses} -> (Index,*{!ConsClasses},*{#FunDef},*FunctionHeap) max_group_index prod_index producers ro_main_dcl_module_n current_max fun_defs fun_heap cons_args | prod_index == size producers = (current_max, cons_args, fun_defs, fun_heap) # (current_max, cons_args, fun_defs, fun_heap) = max_group_index_of_producer producers.[prod_index] current_max fun_defs fun_heap cons_args = max_group_index (inc prod_index) producers ro_main_dcl_module_n current_max fun_defs fun_heap cons_args where max_group_index_of_producer PR_Empty current_max fun_defs fun_heap cons_args = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer PR_Unused current_max fun_defs fun_heap cons_args = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Class {app_args} _ _) current_max fun_defs fun_heap cons_args = foldSt (foldrExprSt max_group_index_of_member) app_args (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Curried {symb_kind=SK_Function {glob_object=fun_index, glob_module}} _) current_max fun_defs fun_heap cons_args | glob_module<>ro_main_dcl_module_n = (current_max, cons_args, fun_defs, fun_heap) # (current_max, fun_defs) = max_group_index_of_fun_with_fun_index fun_index current_max fun_defs = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Curried {symb_kind=SK_LocalMacroFunction fun_index} _) current_max fun_defs fun_heap cons_args # (current_max, fun_defs) = max_group_index_of_fun_with_fun_index fun_index current_max fun_defs = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Curried { symb_kind = SK_GeneratedFunction fun_ptr fun_index} _) current_max fun_defs fun_heap cons_args # (current_max, fun_defs, fun_heap) = max_group_index_of_fun_with_fun_index_and_ptr fun_ptr fun_index current_max fun_defs fun_heap = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Function _ _ fun_index) current_max fun_defs fun_heap cons_args # (current_max, fun_defs) = max_group_index_of_fun_with_fun_index fun_index current_max fun_defs = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_GeneratedFunction { symb_kind = SK_GeneratedFunction fun_ptr fun_index} _ _) current_max fun_defs fun_heap cons_args # (current_max, fun_defs, fun_heap) = max_group_index_of_fun_with_fun_index_and_ptr fun_ptr fun_index current_max fun_defs fun_heap = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_producer (PR_Constructor symb _ args) current_max fun_defs fun_heap cons_args = (current_max, cons_args, fun_defs, fun_heap) // DvA: not a clue what we're trying here... max_group_index_of_producer prod current_max fun_defs fun_heap cons_args = abort ("trans.icl: max_group_index_of_producer" ---> prod) max_group_index_of_member (App {app_symb = {symb_ident, symb_kind = SK_Function { glob_object = fun_index, glob_module = mod_index}}}) (current_max, cons_args, fun_defs, fun_heap) | mod_index == ro_main_dcl_module_n # (size_args, cons_args) = usize cons_args | fun_index < size_args # ({fun_info = {fi_group_index}},fun_defs) = fun_defs![fun_index] = (max fi_group_index current_max, cons_args, fun_defs, fun_heap) = (current_max, cons_args, fun_defs, fun_heap) = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_member (App {app_symb = {symb_ident, symb_kind = SK_LocalMacroFunction fun_index}}) (current_max, cons_args, fun_defs, fun_heap) # (size_args, cons_args) = usize cons_args | fun_index < size_args # ({fun_info = {fi_group_index}}, fun_defs) = fun_defs![fun_index] = (max fi_group_index current_max, cons_args, fun_defs, fun_heap) = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_member (App {app_symb = {symb_kind = SK_GeneratedFunction fun_ptr _}}) (current_max, cons_args, fun_defs, fun_heap) # (FI_Function {gf_fun_def={fun_info = {fi_group_index}}}, fun_heap) = readPtr fun_ptr fun_heap = (max fi_group_index current_max, cons_args, fun_defs, fun_heap) max_group_index_of_member _ (current_max, cons_args, fun_defs, fun_heap) = (current_max, cons_args, fun_defs, fun_heap) max_group_index_of_fun_with_fun_index fun_index current_max fun_defs # (fun_def,fun_defs) = fun_defs![fun_index] = (max fun_def.fun_info.fi_group_index current_max, fun_defs) max_group_index_of_fun_with_fun_index_and_ptr fun_ptr fun_index current_max fun_defs fun_heap # (fun_size, fun_defs) = usize fun_defs | fun_index < fun_size # ({fun_info},fun_defs) = fun_defs![fun_index] = (max fun_info.fi_group_index current_max, fun_defs, fun_heap) # (FI_Function generated_function, fun_heap) = readPtr fun_ptr fun_heap = (max generated_function.gf_fun_def.fun_info.fi_group_index current_max, fun_defs, fun_heap) //@ replaceIntegers class replaceIntegers a :: !a !({!TypeVar}, !{!TypeAttribute}, !AttributePartition) !*{#Bool} -> (!a, !.{#Bool}) // get rid of all those TempV and TA_Var things instance replaceIntegers (a, b) | replaceIntegers a & replaceIntegers b where replaceIntegers (a, b) input used # (a, used) = replaceIntegers a input used (b, used) = replaceIntegers b input used = ((a, b), used) instance replaceIntegers [a] | replaceIntegers a where replaceIntegers [] input used = ([], used) replaceIntegers [h:t] input used # (h, used) = replaceIntegers h input used (t, used) = replaceIntegers t input used = ([h:t], used) instance replaceIntegers TypeAttribute where replaceIntegers (TA_TempVar i) (_, attributes, attr_partition) used # index = attr_partition.[i] attribute = attributes.[index] = (attribute, { used & [index] = isAttrVar attribute }) where isAttrVar (TA_Var _) = True isAttrVar _ = False replaceIntegers ta _ used = (ta, used) instance replaceIntegers Type where replaceIntegers (TA type_symb_ident args) input used # (args, used) = replaceIntegers args input used = (TA type_symb_ident args, used) replaceIntegers (TAS type_symb_ident args strictness) input used # (args, used) = replaceIntegers args input used = (TAS type_symb_ident args strictness, used) replaceIntegers (a --> b) input used # (a, used) = replaceIntegers a input used (b, used) = replaceIntegers b input used = (a --> b, used) replaceIntegers (consvar :@: args) input=:(fresh_type_vars, _, _) used # (TempCV i) = consvar (args, used) = replaceIntegers args input used = (CV fresh_type_vars.[i] :@: args, used) replaceIntegers (TempV i) (fresh_type_vars, _, _) used = (TV fresh_type_vars.[i], used) replaceIntegers type input used = (type, used) instance replaceIntegers AType where replaceIntegers atype=:{at_attribute, at_type} input used # (at_attribute, used) = replaceIntegers at_attribute input used (at_type, used) = replaceIntegers at_type input used = ({atype & at_attribute = at_attribute, at_type = at_type}, used) // Variable binding... bind_to_fresh_expr_var {fv_ident, fv_info_ptr} var_heap # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap form_var = { fv_ident = fv_ident, fv_info_ptr = new_info_ptr, fv_count = undeff, fv_def_level = NotALevel } act_var = { var_ident = fv_ident, var_info_ptr = new_info_ptr, var_expr_ptr = nilPtr } = (form_var, writeVarInfo fv_info_ptr (VI_Expression (Var act_var)) var_heap) bind_to_fresh_type_variable {tv_ident, tv_info_ptr} th_vars # (new_tv_info_ptr, th_vars) = newPtr TVI_Empty th_vars tv = { tv_ident=tv_ident, tv_info_ptr=new_tv_info_ptr } = (tv, writePtr tv_info_ptr (TVI_Type (TV tv)) th_vars) bind_to_fresh_attr_variable {av_ident, av_info_ptr} th_attrs # (new_av_info_ptr, th_attrs) = newPtr AVI_Empty th_attrs av = { av_ident=av_ident, av_info_ptr=new_av_info_ptr } = (av, writePtr av_info_ptr (AVI_Attr (TA_Var av)) th_attrs) bind_to_temp_type_var {tv_info_ptr} (next_type_var_nr, th_vars) = (next_type_var_nr+1, writePtr tv_info_ptr (TVI_Type (TempV next_type_var_nr)) th_vars) bind_to_temp_attr_var {av_info_ptr} (next_attr_var_nr, th_attrs) = (next_attr_var_nr+1, writePtr av_info_ptr (AVI_Attr (TA_TempVar next_attr_var_nr)) th_attrs) transformFunctionApplication :: !FunDef !InstanceInfo !ConsClasses !App ![Expression] !ReadOnlyTI !*TransformInfo -> *(!Expression,!*TransformInfo) transformFunctionApplication fun_def instances cc=:{cc_size, cc_args, cc_linear_bits} app=:{app_symb,app_args} extra_args ro ti # (app_args, extra_args) = complete_application fun_def.fun_arity app_args extra_args // | False -!-> ("transformFunctionApplication",app_symb,app_args,extra_args,fun_def.fun_arity,cc_size) = undef | expanding_consumer = (build_application { app & app_args = app_args } extra_args, ti) | cc_size == 0 # {fun_body=fun_body=:TransformedBody {tb_rhs}, fun_kind} = fun_def | SwitchTransformConstants (ro.ro_transform_fusion && is_not_caf fun_kind && is_sexy_body tb_rhs) False = transform_trivial_function app app_args extra_args ro ti = (build_application { app & app_args = app_args } extra_args, ti) | cc_size >= 0 # is_applied_to_macro_fun = fun_def.fun_info.fi_properties bitand FI_IsMacroFun <> 0 # consumer_is_curried = cc_size <> length app_args # non_rec_consumer = (fun_def.fun_info.fi_properties bitand FI_IsNonRecursive) <> 0 # safe_args = isEmpty [arg \\ arg <- app_args & cc_arg <- cc_args | unsafe cc_arg && non_var arg] with unsafe CAccumulating = True unsafe CVarOfMultimatchCase = True unsafe _ = False non_var (Var _) = False non_var _ = True # ok_non_rec_consumer = non_rec_consumer && safe_args #! (producers, new_args, strict_let_binds, ti) = determineProducers is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer fun_def.fun_type cc_linear_bits cc_args app_args 0 (createArray cc_size PR_Empty) ro ti #! (arity_changed,new_args,extra_args,producers,cc_args,cc_linear_bits,fun_def,n_extra,ti) = determineCurriedProducersInExtraArgs new_args extra_args is_applied_to_macro_fun producers cc_args cc_linear_bits fun_def ro ti | containsProducer cc_size producers || arity_changed # (is_new, fun_def_ptr, instances, ti_fun_heap) = tryToFindInstance producers instances ti.ti_fun_heap | is_new # ti = update_instance_info app_symb.symb_kind instances { ti & ti_fun_heap = ti_fun_heap } # (fun_index, fun_arity, ti) = generateFunction app_symb fun_def cc_args cc_linear_bits producers fun_def_ptr ro n_extra ti | fun_index == (-1) = (build_application { app & app_args = app_args } extra_args, ti) // ---> ("failed instance") # app_symb = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr fun_index } # (app_args, extra_args) = complete_application fun_arity new_args extra_args // # (FI_Function {gf_fun_def},ti_fun_heap) = readPtr fun_def_ptr ti.ti_fun_heap // # ti = {ti & ti_fun_heap = ti_fun_heap} ---> ("generated",fun_def_ptr,gf_fun_def) # (expr,ti) = transformApplication { app & app_symb = app_symb, app_args = app_args } extra_args ro ti = possiblyAddStrictLetBinds expr strict_let_binds ti # (FI_Function {gf_fun_index, gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap | gf_fun_index == (-1) = (build_application { app & app_args = app_args } extra_args, ti) // ---> ("known failed instance") # app_symb` = { app_symb & symb_kind = SK_GeneratedFunction fun_def_ptr gf_fun_index } (app_args, extra_args) = complete_application gf_fun_def.fun_arity new_args extra_args # ti = {ti & ti_fun_heap = ti_fun_heap } // ---> ("known instance",gf_fun_index) # (expr,ti) = transformApplication { app & app_symb = app_symb`, app_args = app_args } extra_args ro ti = possiblyAddStrictLetBinds expr strict_let_binds ti | SwitchTrivialFusion ro.ro_transform_fusion False = transform_trivial_function app app_args extra_args ro ti = (build_application { app & app_args = app_args } extra_args, ti) = (build_application { app & app_args = app_args } extra_args, ti) where expanding_consumer = case fun_def.fun_body of Expanding _ -> True _ -> False is_not_caf FK_Caf = False is_not_caf _ = True possiblyAddStrictLetBinds expr strict_lets ti # (strict_let_binds,let_type) = unzip strict_lets = case strict_let_binds of [] -> (expr,ti) _ # (new_info_ptr, ti_symbol_heap) = newPtr (EI_LetType let_type) ti.ti_symbol_heap ti = {ti & ti_symbol_heap = ti_symbol_heap} -> (Let { let_strict_binds = strict_let_binds , let_lazy_binds = [] , let_expr = expr , let_info_ptr = new_info_ptr , let_expr_position = NoPos },ti) ---> "added strict_let_binds" transform_trivial_function :: !.App ![.Expression] ![.Expression] !.ReadOnlyTI !*TransformInfo -> *(!Expression,!*TransformInfo) transform_trivial_function app=:{app_symb} app_args extra_args ro ti # (fun_def,ti_fun_defs,ti_fun_heap) = get_fun_def app_symb.symb_kind ro.ro_main_dcl_module_n ti.ti_fun_defs ti.ti_fun_heap # {fun_body=fun_body=:TransformedBody {tb_args,tb_rhs},fun_type} = fun_def # (opt_expr, ti_fun_defs, ti_fun_heap, ti_type_heaps, ti_cons_args) = is_trivial_body tb_args tb_rhs app_args fun_type ro ti_fun_defs ti_fun_heap ti.ti_type_heaps ti.ti_cons_args # ti = { ti & ti_fun_defs = ti_fun_defs, ti_fun_heap = ti_fun_heap, ti_type_heaps = ti_type_heaps, ti_cons_args = ti_cons_args } = case opt_expr of No -> (build_application { app & app_symb = app_symb, app_args = app_args } extra_args, ti) (Yes tb_rhs) | isEmpty extra_args -> (tb_rhs, ti) -> (tb_rhs @ extra_args, ti) update_instance_info :: !.SymbKind !.InstanceInfo !*TransformInfo -> *TransformInfo update_instance_info (SK_Function {glob_object}) instances ti=:{ti_instances} = { ti & ti_instances = { ti_instances & [glob_object] = instances } } update_instance_info (SK_LocalMacroFunction glob_object) instances ti=:{ti_instances} = { ti & ti_instances = { ti_instances & [glob_object] = instances } } update_instance_info (SK_GeneratedFunction fun_def_ptr fun_index) instances ti=:{ti_fun_heap, ti_instances} | fun_index < size ti_instances = { ti & ti_instances = { ti_instances & [fun_index] = instances } } # (FI_Function fun_info, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap = { ti & ti_fun_heap = ti_fun_heap <:= (fun_def_ptr, FI_Function { fun_info & gf_instance_info = instances })} complete_application :: !.Int !.[Expression] !.[Expression] -> (!.[Expression],![Expression]) complete_application form_arity args extra_args = (take form_arity all_args,drop form_arity all_args) where all_args = args ++ extra_args build_application :: !.App ![.Expression] -> Expression build_application app [] = App app build_application app extra_args = App app @ extra_args is_cons_or_decons_of_UList_or_UTSList glob_object glob_module imported_funs :== let type = imported_funs.[glob_module].[glob_object].ft_type; in type.st_arity>0 && not (isEmpty type.st_context); determineCurriedProducersInExtraArgs :: ![Expression] ![Expression] !Bool !{!.Producer} ![Int] ![Bool] !FunDef !ReadOnlyTI !*TransformInfo -> *(!Bool,![Expression],![Expression],!{!Producer},![Int],![Bool],!FunDef,!Int,!*TransformInfo) determineCurriedProducersInExtraArgs new_args [] is_applied_to_macro_fun producers cc_args cc_linear_bits fun_def ro ti = (False,new_args,[],producers,cc_args,cc_linear_bits,fun_def,0,ti) determineCurriedProducersInExtraArgs new_args extra_args is_applied_to_macro_fun producers cc_args cc_linear_bits fun_def ro ti | not (SwitchExtraCurriedFusion ro.ro_transform_fusion is_applied_to_macro_fun) = (False,new_args,extra_args,producers,cc_args,cc_linear_bits,fun_def,0,ti) # n_extra_args = length extra_args # {fun_type = Yes symbol_type=:{st_args,st_result,st_arity}} = fun_def # (ok,new_args_types,new_result_type) = get_new_args_types_from_result_type st_result n_extra_args | not ok = (False,new_args,extra_args,producers,cc_args,cc_linear_bits,fun_def,0,ti) # symbol_type = {symbol_type & st_result=new_result_type,st_args=st_args++new_args_types,st_arity=st_arity+n_extra_args} # fun_def = {fun_def & fun_type=Yes symbol_type} # (form_args,var_heap) = create_new_args n_extra_args ti.ti_var_heap # ti = {ti & ti_var_heap=var_heap} # fun_def = case fun_def.fun_body of TransformedBody tb -> {fun_def & fun_body=TransformedBody {tb & tb_args = add_args_to_fun_args form_args tb.tb_args }} # new_producers = arrayPlusList producers [PR_Empty \\ i<-[0..n_extra_args-1]] # new_cc_args = cc_args ++ [CPassive \\ i<-[0..n_extra_args-1]] # new_cc_linear_bits = cc_linear_bits ++ [True \\ i<-[0..n_extra_args-1]] = (True,new_args++extra_args,[],new_producers,new_cc_args,new_cc_linear_bits,fun_def,n_extra_args,ti) where get_new_args_types_from_result_type type 0 = (True,[],type) get_new_args_types_from_result_type {at_type=a-->b} n # (ok,args_types,result_type) = get_new_args_types_from_result_type b (n-1) = (ok,[a:args_types],result_type) get_new_args_types_from_result_type type _ = (False,[],type) create_new_args n_new_args var_heap | n_new_args==0 = ([], var_heap) # new_name = { id_name = "_a", id_info = nilPtr } (info_ptr, var_heap) = newPtr VI_Empty var_heap form_var = { fv_ident = new_name, fv_info_ptr = info_ptr, fv_count = 0, fv_def_level = NotALevel } (form_vars,var_heap) = create_new_args (n_new_args-1) var_heap = ([form_var : form_vars],var_heap) add_args_to_fun_args form_args tb_args = tb_args ++ form_args add_args_to_fun_body act_args new_result_type tb_rhs ro ti = add_arguments tb_rhs act_args new_result_type ro ti where add_arguments (App app=:{app_symb,app_args}) extra_args new_result_type ro ti # (form_arity,fun_defs,fun_heap) = get_arity app_symb ro ti.ti_fun_defs ti.ti_fun_heap # ti = {ti & ti_fun_defs=fun_defs,ti_fun_heap=fun_heap} # ar_diff = form_arity - length app_args | length extra_args <= ar_diff = (App {app & app_args = app_args ++ extra_args }, ti) = (App {app & app_args = app_args ++ take ar_diff extra_args } @ drop ar_diff extra_args, ti) add_arguments (Case kees=:{case_guards,case_default,case_info_ptr}) extra_args new_result_type ro ti # (case_default, ti) = add_arguments_opt case_default extra_args new_result_type ro ti # (case_guards, ti) = add_arguments_guards case_guards extra_args new_result_type ro ti # ti_symbol_heap = overwrite_result_type case_info_ptr new_result_type ti.ti_symbol_heap # ti = {ti & ti_symbol_heap = ti_symbol_heap} = (Case {kees & case_guards = case_guards, case_default = case_default}, ti) where overwrite_result_type case_info_ptr new_result_type ti_symbol_heap #! (EI_CaseType case_type, ti_symbol_heap) = readExprInfo case_info_ptr ti_symbol_heap = writeExprInfo case_info_ptr (EI_CaseType { case_type & ct_result_type = new_result_type}) ti_symbol_heap add_arguments (Let lad=:{let_expr}) extra_args new_result_type ro ti # (let_expr, ti) = add_arguments let_expr extra_args new_result_type ro ti = (Let {lad & let_expr = let_expr}, ti) add_arguments (expr1 @ expr2) extra_args _ ro ti = (expr1 @ (expr2++extra_args),ti) add_arguments expr extra_args _ ro ti = (expr @ extra_args,ti) // ---> ("????",expr) add_arguments_opt No _ _ ro ti = (No,ti) add_arguments_opt (Yes expr) extra_args new_result_type ro ti # (expr, ti) = add_arguments expr extra_args new_result_type ro ti = (Yes expr,ti) add_arguments_guards (AlgebraicPatterns gindex apats) extra_args new_result_type ro ti # (apats, ti) = add_arguments_apats apats extra_args new_result_type ro ti = (AlgebraicPatterns gindex apats, ti) add_arguments_guards (BasicPatterns btype bpats) extra_args new_result_type ro ti # (bpats, ti) = add_arguments_bpats bpats extra_args new_result_type ro ti = (BasicPatterns btype bpats, ti) add_arguments_guards (DynamicPatterns dpats) extra_args new_result_type ro ti # (dpats, ti) = add_arguments_dpats dpats extra_args new_result_type ro ti = (DynamicPatterns dpats, ti) add_arguments_guards (OverloadedListPatterns type decons_expr apats) extra_args new_result_type ro ti # (apats, ti) = add_arguments_apats apats extra_args new_result_type ro ti = (OverloadedListPatterns type decons_expr apats, ti) add_arguments_guards NoPattern extra_args _ ro ti = (NoPattern, ti) add_arguments_apats [] extra_args _ ro ti = ([],ti) add_arguments_apats [ap=:{ap_expr}:aps] extra_args new_result_type ro ti # (ap_expr, ti) = add_arguments ap_expr extra_args new_result_type ro ti # (aps, ti) = add_arguments_apats aps extra_args new_result_type ro ti = ([{ap & ap_expr = ap_expr}:aps],ti) add_arguments_bpats [] extra_args _ ro ti = ([],ti) add_arguments_bpats [bp=:{bp_expr}:bps] extra_args new_result_type ro ti # (bp_expr, ti) = add_arguments bp_expr extra_args new_result_type ro ti # (bps, ti) = add_arguments_bpats bps extra_args new_result_type ro ti = ([{bp & bp_expr = bp_expr}:bps],ti) add_arguments_dpats [] extra_args _ ro ti = ([],ti) add_arguments_dpats [dp=:{dp_rhs}:dps] extra_args new_result_type ro ti # (dp_rhs, ti) = add_arguments dp_rhs extra_args new_result_type ro ti # (dps, ti) = add_arguments_dpats dps extra_args new_result_type ro ti = ([{dp & dp_rhs = dp_rhs}:dps],ti) get_arity {symb_kind=SK_Function {glob_module, glob_object}} ro fun_defs fun_heap | glob_module == ro.ro_main_dcl_module_n # (fun_arity, fun_defs) = fun_defs![glob_object].fun_arity = (fun_arity, fun_defs, fun_heap) # {ft_arity,ft_type} = ro.ro_imported_funs.[glob_module].[glob_object] = (ft_arity + length ft_type.st_context, fun_defs, fun_heap) get_arity {symb_kind=SK_LocalMacroFunction glob_object} ro fun_defs fun_heap # (fun_arity, fun_defs) = fun_defs![glob_object].fun_arity = (fun_arity, fun_defs, fun_heap) get_arity {symb_kind=SK_GeneratedFunction fun_ptr _} ro fun_defs fun_heap # (FI_Function {gf_fun_def={fun_arity}}, fun_heap) = readPtr fun_ptr fun_heap = (fun_arity, fun_defs, fun_heap) get_arity {symb_kind=SK_Constructor {glob_module, glob_object}} ro fun_defs fun_heap # arity = ro.ro_common_defs.[glob_module].com_cons_defs.[glob_object].cons_type.st_arity = (arity, fun_defs, fun_heap) //@ is_trivial_body :: *MatchState = { tvar_map :: ![(TypeVar,TypeVar)] , ms_type_heaps :: !*TypeHeaps , ms_common_defs :: !{# CommonDefs} } is_trivial_body :: ![FreeVar] !Expression ![Expression] !(Optional SymbolType) !.ReadOnlyTI !*{#FunDef} !*FunctionHeap !*TypeHeaps !*{!ConsClasses} -> (!Optional Expression,!*{#FunDef},!*FunctionHeap,!*TypeHeaps,!*{!ConsClasses}) is_trivial_body [fv] (Var bv) [arg] type ro fun_defs fun_heap type_heaps cons_args = if (fv.fv_info_ptr == bv.var_info_ptr) (Yes arg, fun_defs, fun_heap, type_heaps, cons_args) (No, fun_defs, fun_heap, type_heaps , cons_args) is_trivial_body args (App app) f_args type ro fun_defs fun_heap type_heaps cons_args # (safe_producer, fun_heap, cons_args) = get_producer_class app.app_symb.symb_kind ro fun_heap cons_args | not safe_producer = (No,fun_defs,fun_heap,type_heaps,cons_args) # (type`,fun_defs,fun_heap) = get_producer_type app.app_symb ro fun_defs fun_heap # match = match_args (length f_args) info args app.app_args [] = case match of Yes perm # (match, type_heaps) = match_types type type` perm ro.ro_common_defs type_heaps | match # f_args = permute_args f_args (take (length f_args) perm) -> (Yes (App {app & app_args = f_args}),fun_defs,fun_heap,type_heaps,cons_args) -> (No,fun_defs,fun_heap,type_heaps,cons_args) _ -> (No,fun_defs,fun_heap,type_heaps,cons_args) where info :: {!VarInfoPtr} info = {v.fv_info_ptr \\ v <- args} match_args 0 _ [] [] accu = Yes (reverse accu) match_args 0 info [fv:fvs] [Var bv:bvs] accu | fv.fv_info_ptr == bv.var_info_ptr # index = lookup bv.var_info_ptr info = match_args 0 info fvs bvs [index:accu] = No match_args n info [fv:fvs] [Var bv:bvs] accu # index = lookup bv.var_info_ptr info = match_args (dec n) info fvs bvs [index:accu] match_args _ _ _ _ _ = No lookup x d = lookup 0 x d where lookup i x d | d.[i] == x = i = lookup (inc i) x d permute_args args perm = [args!!p \\ p <- perm] match_types type type` perm common_defs type_heaps | not_ok_perm perm = (False,type_heaps) = case type of No -> (True,type_heaps) Yes type -> match_types type type` perm common_defs type_heaps where not_ok_perm perm = length perm <> size info match_types type type` perm common_defs type_heaps | not (match_strictness` (dec type.st_arity) type.st_args_strictness type`.st_args_strictness perm) = (False,type_heaps) = (True,type_heaps) /* # (ok,args,res) = make_args (type`.st_arity) type.st_args type.st_result | not ok = (False,type_heaps) # args` = permute_args args perm # ms = {tvar_map=[], ms_type_heaps = type_heaps,ms_common_defs=common_defs} # (match_ok,ms) = match_arg_types args type`.st_args ms | not match_ok = (False,ms.ms_type_heaps) # (match_ok,ms) = match_res_type res type`.st_result ms | not match_ok = (False,ms.ms_type_heaps) | type.st_context <> [] || type`.st_context <> [] = (False,ms.ms_type_heaps) = (True,ms.ms_type_heaps) where make_args n as r # l = length as | n < l = (False,as,r) | n == l = (True,as,r) = move_args (n-l) as r [] move_args 0 as r accu = (True,as++(reverse accu),r) move_args n as {at_type = a-->r} accu = move_args (dec n) as r [a:accu] move_args _ as r accu = (False,as,r) */ match_strictness` i s1 s2 p | i < 0 = True = arg_is_strict (p!!i) s1 == arg_is_strict i s2 && match_strictness (dec i) s1 s2 match_strictness i s1 s2 | i < 0 = True = arg_is_strict i s1 == arg_is_strict i s2 && match_strictness (dec i) s1 s2 match_arg_types [] [] ms = (True,ms) match_arg_types [arg:args] [arg`:args`] ms # (type_ok,ms) = match_type arg.at_type arg.at_attribute arg`.at_type arg`.at_attribute ms | not type_ok = (False,ms) = match_arg_types args args` ms match_arg_types _ _ ms = (False,ms) match_res_type res res` ms = match_type res.at_type res.at_attribute res`.at_type res`.at_attribute ms match_type (TA tsid types) _ (TA tsid` types`) _ ms | tsid == tsid` = match_arg_types types types` ms match_type (TAS tsid types strictl) _ (TAS tsid` types` strictl`) _ ms | tsid == tsid` | not (match_strictness (dec (length types)) strictl strictl`) = (False,ms) = match_arg_types types types` ms match_type (arg --> res) _ (arg` --> res`) _ ms # (type_ok,ms) = match_type arg.at_type arg.at_attribute arg`.at_type arg`.at_attribute ms | not type_ok = (False,ms) = match_type res.at_type res.at_attribute res`.at_type res`.at_attribute ms match_type (TB bt) _ (TB bt`) _ ms = (bt==bt`,ms) match_type (TV tv) _ (TV tv`) _ ms = match_tvar tv tv` ms match_type t1 a1 t2 a2 ms # type_heaps = ms.ms_type_heaps # (succ1,t1,type_heaps) = tryToExpand t1 a1 ms.ms_common_defs type_heaps # (succ2,t2,type_heaps) = tryToExpand t2 a2 ms.ms_common_defs type_heaps # ms = { ms & ms_type_heaps = type_heaps } | succ1 || succ2 = match_type t1 a1 t2 a2 ms = (False,ms) match_tvar x y ms # (r,tvar_map) = match_tvar x y ms.tvar_map = (r, {ms & tvar_map = tvar_map}) where match_tvar x y [] = (True,[(x,y)]) match_tvar x y ms=:[(x`,y`):t] | x == x` = (y==y`, ms) # (res,t) = match_tvar x y t = (res,[(x`,y`):t]) is_trivial_body args rhs f_args type ro fun_defs fun_heap type_heaps cons_args = (No,fun_defs,fun_heap,type_heaps,cons_args) get_producer_class (SK_GeneratedFunction fun_ptr _) ro fun_heap cons_args # (FI_Function {gf_cons_args={cc_producer}}, fun_heap) = readPtr fun_ptr fun_heap = (cc_producer, fun_heap, cons_args) get_producer_class (SK_LocalMacroFunction glob_object) ro fun_heap cons_args # ({cc_producer},cons_args) = cons_args![glob_object] = (cc_producer, fun_heap, cons_args) get_producer_class (SK_Function { glob_module, glob_object }) ro fun_heap cons_args # (max_index,cons_args) = usize cons_args | glob_module <> ro.ro_main_dcl_module_n || glob_object >= max_index = (False, fun_heap, cons_args) # ({cc_producer},cons_args) = cons_args![glob_object] = (cc_producer, fun_heap, cons_args) get_producer_class (SK_Constructor {glob_module, glob_object}) ro fun_heap cons_args = (SwitchConstructorFusion True False, fun_heap, cons_args) //@ transformApplication transformApplication :: !App ![Expression] !ReadOnlyTI !*TransformInfo -> *(!Expression,!*TransformInfo) transformApplication app=:{app_symb=symb=:{symb_kind}, app_args} extra_args ro ti=:{ti_cons_args,ti_instances,ti_fun_defs} | is_SK_Function_or_SK_LocalMacroFunction symb_kind // otherwise GOTO next alternative # gi = case symb_kind of SK_Function global_index -> global_index SK_LocalMacroFunction index -> { glob_module = ro.ro_main_dcl_module_n, glob_object = index } # { glob_module, glob_object } = gi | glob_module == ro.ro_main_dcl_module_n | glob_object < size ti_cons_args # (cons_class,ti_cons_args) = ti_cons_args![glob_object] (instances, ti_instances) = ti_instances![glob_object] (fun_def, ti_fun_defs) = ti_fun_defs![glob_object] ti = { ti & ti_instances = ti_instances, ti_fun_defs = ti_fun_defs, ti_cons_args = ti_cons_args } = transformFunctionApplication fun_def instances cons_class app extra_args ro ti // It seems as if we have an array function | isEmpty extra_args = (App app, ti) = (App { app & app_args = app_args ++ extra_args}, ti) | glob_module==ro.ro_stdStrictLists_module_n && is_cons_or_decons_of_UList_or_UTSList glob_object glob_module ro.ro_imported_funs && (not (isEmpty app_args)) // && True ---> ("transformApplication "+++toString symb.symb_ident) # {ft_type} = ro.ro_imported_funs.[glob_module].[glob_object] // type of cons instance of instance List [#] a | U(TS)List a # [{tc_class=TCClass {glob_module,glob_object={ds_index}}}:_] = ft_type.st_context # member_n=find_member_n 0 symb.symb_ident.id_name ro.ro_common_defs.[glob_module].com_class_defs.[ds_index].class_members # cons_u_member_index=ro.ro_common_defs.[glob_module].com_class_defs.[ds_index].class_members.[member_n].ds_index # {me_ident,me_offset}=ro.ro_common_defs.[glob_module].com_member_defs.[cons_u_member_index] # select_symb= {glob_module=glob_module,glob_object={ds_ident=me_ident,ds_index=cons_u_member_index,ds_arity=1}} # [first_arg:other_app_args] = app_args; # args=other_app_args++extra_args | isEmpty args = select_member first_arg select_symb me_offset ti # (expr,ti) = select_member first_arg select_symb me_offset ti = case expr of App app -> transformApplication app args ro ti _ -> (expr @ args,ti) // This function is imported | SwitchSpecialFusion (not (isEmpty app_args) ) False // Check imported overloaded function application for specials... # {ft_specials} = ro.ro_imported_funs.[glob_module].[glob_object] # specials = case ft_specials of (SP_ContextTypes s) -> s _ -> [] | not (isEmpty specials) # (ei,ti_symbol_heap) = mapSt readAppInfo app_args ti.ti_symbol_heap with readAppInfo :: !Expression !*ExpressionHeap -> (!ExprInfo,!*ExpressionHeap) readAppInfo (App {app_info_ptr}) heap | isNilPtr app_info_ptr = (EI_Empty,heap) = readPtr app_info_ptr heap readAppInfo _ heap = (EI_Empty,heap) # ti = {ti & ti_symbol_heap = ti_symbol_heap} # context = ro.ro_imported_funs.[glob_module].[glob_object].ft_type.st_context # insts = resolveContext context ei # (num_special_args,special_gi) = findInstInSpecials insts specials | foundSpecial special_gi = build_application {app & app_symb.symb_kind = SK_Function special_gi} (drop num_special_args app_args) extra_args special_gi ti = build_application app app_args extra_args gi ti = build_application app app_args extra_args gi ti = build_application app app_args extra_args gi ti where build_application :: !.App ![.Expression] ![.Expression] !(Global .Int) !*TransformInfo -> (!Expression,!*TransformInfo) build_application app app_args extra_args {glob_module,glob_object} ti | isEmpty extra_args = (App {app & app_args = app_args}, ti) # {ft_arity,ft_type} = ro.ro_imported_funs.[glob_module].[glob_object] form_arity = ft_arity + length ft_type.st_context ar_diff = form_arity - length app_args nr_of_extra_args = length extra_args | nr_of_extra_args <= ar_diff = (App {app & app_args = app_args ++ extra_args }, ti) = (App {app & app_args = app_args ++ take ar_diff extra_args } @ drop ar_diff extra_args, ti) /* build_special_application app app_args extra_args {glob_module,glob_object} ro ti | isEmpty extra_args = (App {app & app_args = app_args}, ti) # {ft_arity,ft_type} = ro.ro_imported_funs.[glob_module].[glob_object] form_arity = ft_arity + length ft_type.st_context ar_diff = form_arity - length app_args nr_of_extra_args = length extra_args | nr_of_extra_args <= ar_diff = (App {app & app_args = app_args ++ extra_args }, ti) = (App {app & app_args = app_args ++ take ar_diff extra_args } @ drop ar_diff extra_args, ti) */ find_member_n :: !Int !String !{#.DefinedSymbol} -> Int find_member_n i member_string a | i *(!Expression,!*TransformInfo) select_member exp=:(App {app_symb={symb_kind=SK_Constructor _},app_args,app_info_ptr}) select_symb me_offset ti=:{ti_symbol_heap} | not (isNilPtr app_info_ptr) # (ei,ti_symbol_heap) = readPtr app_info_ptr ti_symbol_heap # ti = {ti & ti_symbol_heap = ti_symbol_heap} = case ei of (EI_DictionaryType _) -> (app_args !! me_offset,ti) _ -> (Selection NormalSelector exp [RecordSelection select_symb me_offset],ti) select_member exp select_symb me_offset ti = (Selection NormalSelector exp [RecordSelection select_symb me_offset],ti) // XXX linear_bits field has to be added for generated functions transformApplication app=:{app_symb={symb_ident,symb_kind = SK_GeneratedFunction fun_def_ptr fun_index}} extra_args ro ti=:{ti_cons_args,ti_instances,ti_fun_defs,ti_fun_heap} | fun_index < size ti_cons_args # (cons_class, ti_cons_args) = ti_cons_args![fun_index] (instances, ti_instances) = ti_instances![fun_index] (fun_def, ti_fun_defs) = ti_fun_defs![fun_index] ti = { ti & ti_instances = ti_instances, ti_fun_defs = ti_fun_defs, ti_cons_args = ti_cons_args } = transformFunctionApplication fun_def instances cons_class app extra_args ro ti # (FI_Function {gf_fun_def,gf_instance_info,gf_cons_args}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap ti = { ti & ti_fun_heap = ti_fun_heap } = transformFunctionApplication gf_fun_def gf_instance_info gf_cons_args app extra_args ro ti transformApplication app [] ro ti = (App app, ti) transformApplication app=:{app_symb={symb_ident,symb_kind = SK_Constructor cons_index},app_args} extra_args ro ti=:{ti_cons_args,ti_instances,ti_fun_defs,ti_fun_heap} # {cons_type} = ro.ro_common_defs.[cons_index.glob_module].com_cons_defs.[cons_index.glob_object] # (app_args,extra_args) = complete_application cons_type.st_arity app_args extra_args = (build_application { app & app_args = app_args } extra_args, ti) where complete_application :: !.Int ![Expression] ![Expression] -> (![Expression],![Expression]) complete_application form_arity args [] = (args, []) complete_application form_arity args extra_args # arity_diff = min (form_arity - length args) (length extra_args) = (args ++ take arity_diff extra_args, drop arity_diff extra_args) build_application :: !.App ![.Expression] -> Expression build_application app [] = App app build_application app extra_args = App app @ extra_args transformApplication app extra_args ro ti = (App app @ extra_args, ti) transformSelection :: SelectorKind [Selection] Expression ReadOnlyTI *TransformInfo -> (!Expression,!*TransformInfo) transformSelection NormalSelector s=:[RecordSelection _ field_index : selectors] app=:(App appi=:{app_symb={symb_kind= SK_Constructor _ }, app_args, app_info_ptr}) ro ti=:{ti_symbol_heap} | isNilPtr app_info_ptr // urgh: now reevaluates cnf for each nested strict selector :-( | cnf_app_args appi ro = transformSelection NormalSelector selectors (app_args !! field_index) ro ti = (Selection NormalSelector app s, ti) # (app_info, ti_symbol_heap) = readPtr app_info_ptr ti_symbol_heap ti = { ti & ti_symbol_heap = ti_symbol_heap } = case app_info of EI_DictionaryType _ -> transformSelection NormalSelector selectors (app_args !! field_index) ro ti _ // urgh: now reevaluates cnf for each nested strict selector :-( | cnf_app_args appi ro -> transformSelection NormalSelector selectors (app_args !! field_index) ro ti -> (Selection NormalSelector app s, ti) where cnf_args [] index strictness ro = True cnf_args [arg:args] index strictness ro | arg_is_strict index strictness = case arg of BasicExpr _ -> cnf_args args (inc index) strictness ro App app -> cnf_app_args app ro _ -> False = cnf_args args (inc index) strictness ro cnf_app_args {app_symb=symb=:{symb_kind = SK_Constructor cons_index, symb_ident}, app_args} ro # {cons_type} = ro.ro_common_defs.[cons_index.glob_module].com_cons_defs.[cons_index.glob_object] = cnf_args app_args 0 cons_type.st_args_strictness ro cnf_app_args {app_symb=symb=:{symb_kind}, app_args} ro = False transformSelection NormalSelector s=:[RecordSelection _ field_index : selectors] app=:(App appi=:{app_symb=app_symb=:{symb_kind}, app_args, app_info_ptr}) ro ti | isOKSymbol symb_kind && isEmpty app_args # (fun_def,ti_fun_defs,ti_fun_heap) = get_fun_def symb_kind ro.ro_main_dcl_module_n ti.ti_fun_defs ti.ti_fun_heap # ti = {ti & ti_fun_defs = ti_fun_defs, ti_fun_heap = ti_fun_heap} # {fun_body,fun_type,fun_kind} = fun_def | is_not_caf fun_kind = case fun_body of TransformedBody {tb_rhs} -> case tb_rhs of App app -> transformSelection NormalSelector s tb_rhs ro ti _ -> (Selection NormalSelector app s, ti) = (Selection NormalSelector app s, ti) where isOKSymbol (SK_Function {glob_module}) = glob_module == ro.ro_main_dcl_module_n isOKSymbol (SK_LocalMacroFunction _) = True isOKSymbol (SK_GeneratedFunction _ _) = True isOKSymbol _ = False is_not_caf FK_Caf = False is_not_caf _ = True transformSelection NormalSelector [] expr ro ti = (expr, ti) transformSelection selector_kind selectors expr ro ti = (Selection selector_kind expr selectors, ti) //@ determineProducers: finds all legal producers in the argument list. // This version finds FIRST legal producer in argument list... // XXX store linear_bits and cc_args together ? determineProducers :: !Bool !Bool !Bool !(Optional SymbolType) ![Bool] ![Int] ![Expression] !Int *{!Producer} !ReadOnlyTI !*TransformInfo -> *(!*{!Producer},![Expression],![(LetBind,AType)],!*TransformInfo); determineProducers _ _ _ _ _ _ [] _ producers _ ti = (producers, [], [], ti) determineProducers is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer fun_type [linear_bit : linear_bits] [ cons_arg : cons_args ] [ arg : args ] prod_index producers ro ti | cons_arg == CActive # (producers, new_arg, ti) = determine_producer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit arg [] prod_index producers ro ti | isProducer producers.[prod_index] = (producers, new_arg++args, [], ti) #! (producers, new_args, lb, ti) = determineProducers is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer fun_type linear_bits cons_args args (inc prod_index) producers ro ti = (producers, new_arg++new_args, lb, ti) | SwitchUnusedFusion ( ro.ro_transform_fusion && cons_arg == CUnusedStrict && isStrictArg fun_type prod_index ) False # producers = { producers & [prod_index] = PR_Unused } # (lb,ti) = case isStrictVar arg of True -> ([],ti) _ # (info_ptr, ti_var_heap) = newPtr VI_Empty ti.ti_var_heap ti = {ti & ti_var_heap = ti_var_heap} lb = {lb_dst= { fv_ident = { id_name = "dummy_for_strict_unused", id_info = nilPtr } , fv_info_ptr = info_ptr , fv_count = 0 , fv_def_level = NotALevel } ,lb_src=arg ,lb_position=NoPos } -> ([(lb,getArgType fun_type prod_index)],ti) = (producers, args, lb, ti) ---> ("UnusedStrict",lb,arg,fun_type) | SwitchUnusedFusion ( ro.ro_transform_fusion && cons_arg == CUnusedStrict && not (isStrictArg fun_type prod_index) && isStrictVar arg ) False # producers = { producers & [prod_index] = PR_Unused } = (producers, args, [], ti) ---> ("UnusedMixed",arg,fun_type) | SwitchUnusedFusion (ro.ro_transform_fusion && cons_arg == CUnusedLazy) False # producers = { producers & [prod_index] = PR_Unused } = (producers, args, [], ti) ---> ("UnusedLazy",arg,fun_type) #! (producers, new_args, lb, ti) = determineProducers is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer fun_type linear_bits cons_args args (inc prod_index) producers ro ti = (producers, [arg : new_args], lb, ti) where isProducer PR_Empty = False isProducer _ = True isStrictArg No _ = False isStrictArg (Yes {st_args_strictness}) index = arg_is_strict index st_args_strictness getArgType (Yes {st_args}) index = st_args!!index isStrictVar (Var bv) = not (isEmpty [fv \\ fv <- ro.ro_fun_vars | fv.fv_info_ptr == bv.var_info_ptr]) isStrictVar _ = False determine_producer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit arg=:(App app=:{app_info_ptr}) new_args prod_index producers ro ti | isNilPtr app_info_ptr = determineProducer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit app EI_Empty new_args prod_index producers ro ti # (app_info, ti_symbol_heap) = readPtr app_info_ptr ti.ti_symbol_heap # ti = { ti & ti_symbol_heap = ti_symbol_heap } = determineProducer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit app app_info new_args prod_index producers ro ti determine_producer _ _ _ _ arg new_args _ producers _ ti = (producers, [arg : new_args], ti) NoDictionaryElimination :== False determineProducer :: Bool Bool Bool Bool App ExprInfo [Expression] Int *{!Producer} ReadOnlyTI *TransformInfo -> *(!*{!Producer},![Expression],!*TransformInfo) // XXX check for linear_bit also in case of a constructor ? determineProducer _ _ _ _ app=:{app_symb = symb=:{symb_kind = SK_Constructor _}, app_args} (EI_DictionaryType type) new_args prod_index producers _ ti | NoDictionaryElimination = (producers, [App app : new_args ], ti) # (app_args, (new_vars_and_types, free_vars, ti_var_heap)) = renewVariables app_args ti.ti_var_heap # prod = PR_Class { app & app_args = app_args } new_vars_and_types type = ( { producers & [prod_index] = prod } , mapAppend Var free_vars new_args , { ti & ti_var_heap = ti_var_heap } ) determineProducer _ _ _ linear_bit app=:{app_symb = symb=:{symb_kind = SK_Constructor cons_index, symb_ident}, app_args} _ new_args prod_index producers ro ti # {cons_type} = ro.ro_common_defs.[cons_index.glob_module].com_cons_defs.[cons_index.glob_object] rnf = rnf_args app_args 0 cons_type.st_args_strictness ro //---> ("rnf_args",symb_ident) | SwitchConstructorFusion (ro.ro_transform_fusion && SwitchRnfConstructorFusion (linear_bit || rnf) linear_bit) False # producers = {producers & [prod_index] = PR_Constructor symb (length app_args) app_args } = (producers, app_args ++ new_args, ti) = ( producers, [App app : new_args ], ti) where rnf_args [] index strictness ro = True rnf_args [arg:args] index strictness ro | arg_is_strict index strictness = case arg of BasicExpr _ -> rnf_args args (inc index) strictness ro //---> ("rnf_arg","Basic") App app -> rnf_app_args app args index strictness ro //---> ("rnf_arg","App") _ -> False //---> ("rnf_arg","Other") = rnf_args args (inc index) strictness ro //---> ("rnf_arg","Lazy") rnf_app_args {app_symb=symb=:{symb_kind = SK_Constructor cons_index, symb_ident}, app_args} args index strictness ro # {cons_type} = ro.ro_common_defs.[cons_index.glob_module].com_cons_defs.[cons_index.glob_object] | rnf_args app_args 0 cons_type.st_args_strictness ro //---> ("rnf_args",symb_ident) = rnf_args args (inc index) strictness ro = False // what else is rnf => curried apps rnf_app_args {app_symb=symb=:{symb_kind}, app_args} args index strictness ro = False determineProducer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit app=:{app_symb = symb=:{ symb_kind = SK_GeneratedFunction fun_ptr fun_index}, app_args} _ new_args prod_index producers ro ti # (FI_Function {gf_cons_args={cc_producer},gf_fun_def={fun_body, fun_arity, fun_type, fun_info}}, ti_fun_heap) = readPtr fun_ptr ti.ti_fun_heap ti = { ti & ti_fun_heap=ti_fun_heap } | length app_args<>fun_arity | is_applied_to_macro_fun = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce1cc_macro",symb.symb_ident) | SwitchCurriedFusion ro.ro_transform_fusion cc_producer False = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce1cc_curried",symb.symb_ident) = (producers, [App app : new_args ], ti) # is_good_producer = case fun_body of Expanding _ -> False (TransformedBody {tb_rhs}) -> SwitchGeneratedFusion (ro.ro_transform_fusion && linear_bit && is_sexy_body tb_rhs) False | cc_producer && is_good_producer = ({ producers & [prod_index] = (PR_GeneratedFunction symb (length app_args) fun_index)}, app_args ++ new_args, ti) -!-> ("Produce1cc",symb.symb_ident) # not_expanding_producer = case fun_body of Expanding _ -> False _ -> True // -> cc_producer | SwitchHOFusion ((not consumer_is_curried && not_expanding_producer) && is_applied_to_macro_fun && linear_bit && is_higher_order_function fun_type) False = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce1cc_ho",symb.symb_ident) | SwitchHOFusion` ((not consumer_is_curried && not_expanding_producer) && ok_non_rec_consumer && linear_bit && is_higher_order_function fun_type) False = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce1cc_hnr",symb.symb_ident) // NON-REC... # non_rec_producer = (fun_info.fi_properties bitand FI_IsNonRecursive) <> 0 # ok_non_rec = case fun_body of Expanding _ -> False (TransformedBody {tb_rhs}) -> ro.ro_transform_fusion && not_expanding_producer && is_sexy_body tb_rhs && ok_non_rec_consumer && non_rec_producer//is_good_producer | SwitchNonRecFusion ok_non_rec False = ({ producers & [prod_index] = (PR_GeneratedFunction symb (length app_args) fun_index)}, app_args ++ new_args, ti) -!-> ("Produce1nr",symb.symb_ident) // ...NON-REC = (producers, [App app : new_args ], ti) -!-> ("Produce1--",symb.symb_ident) determineProducer is_applied_to_macro_fun consumer_is_curried ok_non_rec_consumer linear_bit app=:{app_symb = symb=:{symb_kind}, app_args} _ new_args prod_index producers ro ti | is_SK_Function_or_SK_LocalMacroFunction symb_kind # { glob_module, glob_object } = case symb_kind of SK_Function global_index -> global_index SK_LocalMacroFunction index -> { glob_module = ro.ro_main_dcl_module_n, glob_object = index } # (fun_arity, ti) = get_fun_arity glob_module glob_object ro ti | length app_args<>fun_arity | is_applied_to_macro_fun = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce2cc_macro",symb.symb_ident) # ({cc_producer},ti) = ti!ti_cons_args.[glob_object] | SwitchCurriedFusion ro.ro_transform_fusion cc_producer False = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce2cc_curried",symb.symb_ident) = (producers, [App app : new_args ], ti) #! max_index = size ti.ti_cons_args | glob_module <> ro.ro_main_dcl_module_n || glob_object >= max_index /* Sjaak, to skip array functions */ = (producers, [App app : new_args ], ti) -!-> ("Produce2cc_array",symb.symb_ident,if (glob_module <> ro.ro_main_dcl_module_n) "foreign" "array") # ({fun_body,fun_type,fun_info}, ti) = ti!ti_fun_defs.[glob_object] (TransformedBody {tb_rhs}) = fun_body is_good_producer = SwitchFunctionFusion (ro.ro_transform_fusion && linear_bit && is_sexy_body tb_rhs) False {cc_producer} = ti.ti_cons_args.[glob_object] | is_good_producer && cc_producer && not consumer_is_curried = ({ producers & [prod_index] = (PR_Function symb (length app_args) glob_object)}, app_args ++ new_args, ti) -!-> ("Produce2cc",symb.symb_ident) # not_expanding_producer = case fun_body of Expanding _ -> False _ -> True // -> cc_producer | (not consumer_is_curried && not_expanding_producer) && is_applied_to_macro_fun && linear_bit && is_higher_order_function fun_type = ({ producers & [prod_index] = PR_Curried symb (length app_args)}, app_args ++ new_args, ti) -!-> ("Produce2cc_ho",symb.symb_ident) // NON-REC... # non_rec_producer = (fun_info.fi_properties bitand FI_IsNonRecursive) <> 0 # ok_non_rec = case fun_body of Expanding _ -> False (TransformedBody {tb_rhs}) -> ro.ro_transform_fusion && not_expanding_producer && is_sexy_body tb_rhs && ok_non_rec_consumer && non_rec_producer//&& is_good_producer | SwitchNonRecFusion ok_non_rec False = ({ producers & [prod_index] = (PR_Function symb (length app_args) glob_object)}, app_args ++ new_args, ti) -!-> ("Produce2nr",symb.symb_ident) // ...NON-REC = (producers, [App app : new_args ], ti) -!-> ("Produce2-1",symb.symb_ident) = (producers, [App app : new_args ], ti) -!-> ("Produce2-2",symb.symb_ident) where get_max_index ti=:{ti_cons_args} #! (max_index, ti_cons_args) = usize ti_cons_args = (max_index, {ti & ti_cons_args = ti_cons_args}) get_fun_arity glob_module glob_object ro ti | glob_module <> ro.ro_main_dcl_module_n # {st_arity, st_context} = ro.ro_imported_funs.[glob_module].[glob_object].ft_type = (st_arity+length st_context, ti) // for imported functions you have to add ft_arity and length st_context, but for unimported // functions fun_arity alone is sufficient = ti!ti_fun_defs.[glob_object].fun_arity // when two function bodies have fusion with each other this only leads into satisfaction if one body // fulfills the following sexyness property // DvA: now that we have producer requirements we can integrate this condition there... is_sexy_body (AnyCodeExpr _ _ _) = False is_sexy_body (ABCCodeExpr _ _) = False is_sexy_body (Let {let_strict_binds}) = isEmpty let_strict_binds // currently a producer's body must not be a let with strict bindings. The code sharing elimination algorithm assumes that // all strict let bindings are on the top level expression (see "convertCasesOfFunctionsIntoPatterns"). This assumption // could otherwise be violated during fusion. // -> Here is place for optimisation: Either the fusion algorithm or the code sharing elimination algorithm could be // extended to generate new functions when a strict let ends up during fusion in a non top level position (MW) is_sexy_body _ = True is_higher_order_function (Yes {st_result={at_type=_ --> _}}) = True is_higher_order_function _ = False containsProducer prod_index producers | prod_index == 0 = False #! prod_index = dec prod_index = is_a_producer producers.[prod_index] || containsProducer prod_index producers where is_a_producer PR_Empty = False is_a_producer _ = True :: *RenewState :== (![(BoundVar, Type)], ![BoundVar], !*VarHeap) // DvA: should be in typesupport? renewVariables :: ![Expression] !*VarHeap -> (![Expression], !RenewState) renewVariables exprs var_heap # (exprs, (new_vars, free_vars, var_heap)) = mapSt (mapExprSt map_expr preprocess_local_var postprocess_local_var) exprs ([], [], var_heap) var_heap = foldSt (\{var_info_ptr} var_heap -> writeVarInfo var_info_ptr VI_Empty var_heap) free_vars var_heap = (exprs, (new_vars, free_vars, var_heap)) where map_expr :: !Expression !RenewState -> (!Expression, !RenewState) map_expr (Var var=:{var_info_ptr, var_ident}) (new_vars_accu, free_vars_accu, var_heap) # (var_info, var_heap) = readPtr var_info_ptr var_heap = case var_info of VI_Extended _ (VI_Forward new_var) -> ( Var new_var , (new_vars_accu, free_vars_accu, var_heap)) VI_Extended evi=:(EVI_VarType var_type) _ # (new_var, var_heap) = allocate_and_bind_new_var var_ident var_info_ptr evi var_heap -> ( Var new_var , ( [(new_var, var_type.at_type) : new_vars_accu] , [var:free_vars_accu] , var_heap ) ) _ -> abort "map_expr in module trans does not match\n"// <<- ("map_expr",var,var_info) map_expr x st = (x, st) preprocess_local_var :: !FreeVar !RenewState -> (!FreeVar, !RenewState) preprocess_local_var fv=:{fv_ident, fv_info_ptr} (new_vars_accu, free_vars_accu, var_heap) // # (VI_Extended evi _, var_heap) // = readPtr fv_info_ptr var_heap # (evi, var_heap) = readExtendedVarInfo fv_info_ptr var_heap (new_var, var_heap) = allocate_and_bind_new_var fv_ident fv_info_ptr evi var_heap = ( { fv & fv_info_ptr = new_var.var_info_ptr } , (new_vars_accu, free_vars_accu, var_heap)) allocate_and_bind_new_var var_ident var_info_ptr evi var_heap # (new_info_ptr, var_heap) = newPtr (VI_Extended evi VI_Empty) var_heap new_var = { var_ident = var_ident, var_info_ptr = new_info_ptr, var_expr_ptr = nilPtr } var_heap = writeVarInfo var_info_ptr (VI_Forward new_var) var_heap = (new_var, var_heap) postprocess_local_var :: !FreeVar !RenewState -> RenewState postprocess_local_var {fv_info_ptr} (a, b, var_heap) = (a, b, writeVarInfo fv_info_ptr VI_Empty var_heap) //@ ExprSt ops mapExprSt f map_free_var postprocess_free_var expr st :== map_expr_st expr st where map_expr_st expr=:(Var bound_var) st = f expr st map_expr_st (App app=:{app_args}) st # (app_args, st) = mapSt map_expr_st app_args st = f (App { app & app_args = app_args }) st map_expr_st (Let lad=:{let_lazy_binds, let_strict_binds, let_expr}) st # (lazy_free_vars, st) = mapSt (\{lb_dst} st -> map_free_var lb_dst st) let_lazy_binds st (strict_free_vars, st) = mapSt (\{lb_dst} st -> map_free_var lb_dst st) let_strict_binds st (lazy_rhss, st) = mapSt (\{lb_src} st -> map_expr_st lb_src st) let_lazy_binds st (strict_rhss, st) = mapSt (\{lb_src} st -> map_expr_st lb_src st) let_strict_binds st (let_expr, st) = map_expr_st let_expr st st = foldSt (\{lb_dst} st -> postprocess_free_var lb_dst st) let_lazy_binds st st = foldSt (\{lb_dst} st -> postprocess_free_var lb_dst st) let_strict_binds st expr = Let { lad & let_lazy_binds = add_let_binds lazy_free_vars lazy_rhss let_lazy_binds , let_strict_binds = add_let_binds strict_free_vars strict_rhss let_strict_binds , let_expr = let_expr } = f expr st map_expr_st (Selection a expr b) st # (expr, st) = map_expr_st expr st = f (Selection a expr b) st // AA: map_expr_st expr=:(BasicExpr _) st = f expr st map_expr_st (expr @ exprs) st = abort "trans.icl: map_expr_st (expr @ exprs) not implemented\n" map_expr_st (TupleSelect ds n expr) st = abort "trans.icl: map_expr_st (TupleSelect ds n expr) not implemented\n" map_expr_st (DynamicExpr dyn_expr) st = abort "trans.icl: map_expr_st (DynamicExpr dyn_expr) not implemented\n" map_expr_st _ st = abort "trans.icl: map_expr_st does not match !!!!!!!!!!!!\n" foldrExprSt f expr st :== foldr_expr_st expr st where foldr_expr_st expr=:(Var _) st = f expr st foldr_expr_st app=:(App {app_args}) st = f app (foldSt foldr_expr_st app_args st) foldr_expr_st lad=:(Let {let_lazy_binds, let_strict_binds, let_expr}) st # st = foldSt (\{lb_src} st -> foldr_expr_st lb_src st) let_lazy_binds st st = foldSt (\{lb_src} st -> foldr_expr_st lb_src st) let_strict_binds st st = f let_expr st = f lad st foldr_expr_st sel=:(Selection a expr b) st = f sel (foldr_expr_st expr st) // AA: foldr_expr_st expr=:(BasicExpr _) st = f expr st add_let_binds :: [FreeVar] [Expression] [LetBind] -> [LetBind] add_let_binds free_vars rhss original_binds = [{ original_bind & lb_dst = lb_dst, lb_src = lb_src} \\ lb_dst <- free_vars & lb_src <- rhss & original_bind <- original_binds] //@ transformGroups transformGroups :: !CleanupInfo !Int !Int !Int !Int !*{!Group} !*{#FunDef} !*{!.ConsClasses} !{# CommonDefs} !{# {# FunType} } !*ImportedTypes !ImportedConstructors !*TypeDefInfos !*VarHeap !*TypeHeaps !*ExpressionHeap !Bool !*File !*PredefinedSymbols -> (!*{!Group}, !*{#FunDef}, !*ImportedTypes, !ImportedConstructors, !*VarHeap, !*TypeHeaps, !*ExpressionHeap, !*{!ConsClasses}, !*File, !*PredefinedSymbols) transformGroups cleanup_info main_dcl_module_n stdStrictLists_module_n def_min def_max groups fun_defs cons_args common_defs imported_funs imported_types collected_imports type_def_infos var_heap type_heaps symbol_heap compile_with_fusion error predef_symbols #! nr_of_funs = size fun_defs # initial_ti = { ti_fun_defs = fun_defs , ti_instances = createArray nr_of_funs II_Empty , ti_cons_args = cons_args , ti_new_functions = [] , ti_fun_heap = newHeap , ti_var_heap = var_heap , ti_symbol_heap = symbol_heap , ti_type_heaps = type_heaps , ti_type_def_infos = type_def_infos , ti_next_fun_nr = nr_of_funs , ti_cleanup_info = cleanup_info , ti_recursion_introduced = No , ti_error_file = error , ti_predef_symbols = predef_symbols } # groups = [group \\ group <-: groups] # (groups, imported_types, collected_imports, fun_indices_with_abs_syn_types, ti) = transform_groups 0 groups [] common_defs imported_funs imported_types collected_imports [] initial_ti # groups = {group \\ group <- reverse groups} {ti_fun_defs,ti_new_functions,ti_var_heap,ti_symbol_heap,ti_fun_heap,ti_next_fun_nr,ti_type_heaps,ti_cleanup_info} = ti # (fun_defs, imported_types, collected_imports, type_heaps, var_heap) = foldSt (expand_abstract_syn_types_in_function_type common_defs) (reverse fun_indices_with_abs_syn_types) (ti_fun_defs, imported_types, collected_imports, ti_type_heaps, ti_var_heap) (groups, new_fun_defs, new_cons_classes, imported_types, collected_imports, type_heaps, var_heap) = foldSt (add_new_function_to_group common_defs ti_fun_heap) ti_new_functions (groups, [], [], imported_types, collected_imports, type_heaps, var_heap) symbol_heap = foldSt cleanup_attributes ti.ti_cleanup_info ti.ti_symbol_heap fun_defs = { fundef \\ fundef <- [ fundef \\ fundef <-: fun_defs ] ++ new_fun_defs } cons_args = { consarg \\ consarg <- [ consarg \\ consarg <-: ti.ti_cons_args ] ++ new_cons_classes } = (groups, fun_defs, imported_types, collected_imports, var_heap, type_heaps, symbol_heap, cons_args, ti.ti_error_file, ti.ti_predef_symbols) where transform_groups :: !Int ![.Group] !u:[Group] !{#CommonDefs} !{#{#FunType}} !*{#{#(TypeDef .TypeRhs)}} ![(Global Int)] !v:[Int] !*TransformInfo -> *(!w:[Group],!.{#{#(TypeDef .TypeRhs)}},![(Global Int)],!x:[Int],!*TransformInfo), [u <= w,v <= x] transform_groups group_nr [] acc_groups common_defs imported_funs imported_types collected_imports fun_indices_with_abs_syn_types ti = (acc_groups, imported_types, collected_imports, fun_indices_with_abs_syn_types, ti) transform_groups group_nr [group:groups] acc_groups common_defs imported_funs imported_types collected_imports fun_indices_with_abs_syn_types ti # {group_members} = group # (ti_fun_defs, imported_types, collected_imports, fun_indices_with_abs_syn_types, ti_type_heaps, ti_var_heap) = foldSt (convert_function_type common_defs) group_members (ti.ti_fun_defs, imported_types, collected_imports, fun_indices_with_abs_syn_types, ti.ti_type_heaps, ti.ti_var_heap) # ti = { ti & ti_fun_defs = ti_fun_defs, ti_type_heaps = ti_type_heaps, ti_var_heap = ti_var_heap } # (group_nr,acc_groups,ti) = transform_group common_defs imported_funs group_nr group_members acc_groups ti = transform_groups group_nr groups acc_groups common_defs imported_funs imported_types collected_imports fun_indices_with_abs_syn_types ti transform_groups` :: !{#CommonDefs} !{#{#FunType}} !Int ![Group] !u:[Group] !*TransformInfo -> *(!Int,!u:[Group],!*TransformInfo) transform_groups` common_defs imported_funs group_nr [] acc_groups ti = (group_nr, acc_groups, ti) transform_groups` common_defs imported_funs group_nr [{group_members}:groups] acc_groups ti # (group_nr,acc_groups,ti) = transform_group common_defs imported_funs group_nr group_members acc_groups ti = transform_groups` common_defs imported_funs group_nr groups acc_groups ti transform_group :: !{#CommonDefs} !{#{#FunType}} !Int ![Int] !u:[Group] !*TransformInfo -> *(!Int,!u:[Group],!*TransformInfo) transform_group common_defs imported_funs group_nr group_members acc_groups ti // assign group_nr to group_members # ti = ti <-!- ("transform_group",group_nr) # ti = foldSt (assign_group group_nr) group_members ti # (before,ti) = ti!ti_next_fun_nr // transform group_members # ti = foldSt (transform_function common_defs imported_funs) group_members ti // partitionate group: need to know added functions for this... # (after,ti) = ti!ti_next_fun_nr | not (compile_with_fusion || after > before) = (inc group_nr,[{group_members=group_members}:acc_groups],ti) # (new_groups,ti) = partition_group group_nr (group_members++[before..after-1]) ti // reanalyse consumers # (cleanup,ti_fun_defs,ti_var_heap,ti_symbol_heap,ti_fun_heap,ti_cons_args,same) = reanalyseGroups common_defs imported_funs main_dcl_module_n stdStrictLists_module_n ti.ti_new_functions new_groups ti.ti_fun_defs ti.ti_var_heap ti.ti_symbol_heap ti.ti_fun_heap ti.ti_cons_args # ti = {ti & ti_cleanup_info = cleanup ++ ti.ti_cleanup_info , ti_fun_defs = ti_fun_defs , ti_var_heap = ti_var_heap , ti_symbol_heap = ti_symbol_heap , ti_fun_heap = ti_fun_heap , ti_cons_args = ti_cons_args } // if wanted reapply transform_group to all found groups | (after>before) || (length new_groups > 1) || not same = transform_groups` common_defs imported_funs group_nr new_groups acc_groups ti // producer annotation for finished components! # ti = reannotate_producers group_nr group_members ti = (inc group_nr,(reverse new_groups)++acc_groups,ti) changed_group_classification [] ti = (False,ti) changed_group_classification [fun:funs] ti = (False,ti) assign_group :: !.Int !.Int !*TransformInfo -> *TransformInfo assign_group group_number fun ti # (fd,ti) = get_fun_def fun ti # fd = { fd & fun_info.fi_group_index = group_number } # ti = set_fun_def fun fd ti = ti get_fun_def :: !.Int !*TransformInfo -> *(!FunDef,!*TransformInfo) get_fun_def fun ti=:{ti_fun_defs} | fun < size ti_fun_defs # (fun_def, ti) = ti!ti_fun_defs.[fun] = (fun_def,ti) # (fun_def_ptr,ti_fun_heap) = lookup_ptr fun ti.ti_new_functions ti.ti_fun_heap with lookup_ptr fun [] ti_fun_heap = abort "drat" lookup_ptr fun [fun_def_ptr:new_functions] ti_fun_heap # (FI_Function {gf_fun_index}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap | gf_fun_index == fun = (fun_def_ptr, ti_fun_heap) = lookup_ptr fun new_functions ti_fun_heap # (FI_Function {gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap ti = { ti & ti_fun_heap = ti_fun_heap } = (gf_fun_def,ti) set_fun_def :: !.Int !.FunDef !*TransformInfo -> *TransformInfo set_fun_def fun fun_def ti=:{ti_fun_defs} | fun < size ti_fun_defs = {ti & ti_fun_defs.[fun] = fun_def} # (fun_def_ptr,ti_fun_heap) = lookup_ptr fun ti.ti_new_functions ti.ti_fun_heap with lookup_ptr fun [] ti_fun_heap = abort "drat" lookup_ptr fun [fun_def_ptr:new_functions] ti_fun_heap # (FI_Function {gf_fun_index}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap | gf_fun_index == fun = (fun_def_ptr, ti_fun_heap) = lookup_ptr fun new_functions ti_fun_heap # (FI_Function gf, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap # ti_fun_heap = writePtr fun_def_ptr (FI_Function {gf & gf_fun_def = fun_def}) ti_fun_heap ti = { ti & ti_fun_heap = ti_fun_heap } = ti partition_group :: !.Int ![.Int] !*TransformInfo -> *(![Group],!*TransformInfo) partition_group group_nr group_members ti # fun_defs = ti.ti_fun_defs # fun_heap = ti.ti_fun_heap # max_fun_nr = ti.ti_next_fun_nr # new_functions = ti.ti_new_functions # main_dcl_module_n = main_dcl_module_n # next_group = group_nr # predef_symbols = ti.ti_predef_symbols # var_heap = ti.ti_var_heap # expression_heap = ti.ti_symbol_heap # error_admin = {ea_file = ti.ti_error_file, ea_loc = [], ea_ok = True } # (_,groups,fun_defs,fun_heap,predef_symbols,var_heap,expression_heap,error_admin) = partitionateFunctions`` max_fun_nr next_group new_functions fun_defs group_members main_dcl_module_n def_min def_max fun_heap predef_symbols var_heap expression_heap error_admin # ti = { ti & ti_fun_defs = fun_defs , ti_fun_heap = fun_heap , ti_predef_symbols = predef_symbols , ti_var_heap = var_heap , ti_symbol_heap = expression_heap , ti_error_file = error_admin.ea_file } = (groups,ti) transform_function :: !{#.CommonDefs} !{#{#.FunType}} !.Int !*TransformInfo -> *TransformInfo transform_function common_defs imported_funs fun ti # (fun_def, ro_fun, ti) = get_fun_def_and_symb_ident fun ti # ti = ti <-!- ("transform_function",fun,ro_fun,fun_def) # (Yes {st_args,st_args_strictness})= fun_def.fun_type {fun_body = TransformedBody tb} = fun_def ti_var_heap = fold2St store_arg_type_info tb.tb_args st_args ti.ti_var_heap ro = { ro_imported_funs = imported_funs , ro_common_defs = common_defs , ro_root_case_mode = get_root_case_mode tb , ro_fun_root = ro_fun , ro_fun_case = ro_fun , ro_fun_orig = ro_fun , ro_fun_args = tb.tb_args , ro_fun_vars = [arg \\ arg <- tb.tb_args & i <- [0..] | arg_is_strict i st_args_strictness] , ro_fun_geni = (-1,-1) , ro_main_dcl_module_n = main_dcl_module_n , ro_transform_fusion = compile_with_fusion , ro_stdStrictLists_module_n = stdStrictLists_module_n } ti = { ti & ti_var_heap = ti_var_heap } <-!- ("transform_function",fun,ro.ro_root_case_mode) (fun_rhs, ti) = transform tb.tb_rhs ro ti fun_def = { fun_def & fun_body = TransformedBody { tb & tb_rhs = fun_rhs }} # ti = set_fun_def fun fun_def ti = ti where store_arg_type_info {fv_info_ptr} a_type ti_var_heap = setExtendedVarInfo fv_info_ptr (EVI_VarType a_type) ti_var_heap fun_def_to_symb_ident fun_index fsize {fun_ident} | fun_index < fsize = { symb_ident=fun_ident, symb_kind=SK_Function {glob_object=fun_index, glob_module=main_dcl_module_n } } get_root_case_mode {tb_rhs=Case _} = RootCase get_root_case_mode _ = NotRootCase get_fun_def_and_symb_ident fun ti=:{ti_fun_defs} | fun < size ti_fun_defs # (fun_def, ti) = ti!ti_fun_defs.[fun] # si = { symb_ident=fun_def.fun_ident, symb_kind=SK_Function {glob_object=fun, glob_module=main_dcl_module_n } } = (fun_def,si,ti) # (fun_def_ptr,ti_fun_heap) = lookup_ptr fun ti.ti_new_functions ti.ti_fun_heap with lookup_ptr fun [] ti_fun_heap = abort "drat" lookup_ptr fun [fun_def_ptr:new_functions] ti_fun_heap # (FI_Function {gf_fun_index}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap | gf_fun_index == fun = (fun_def_ptr, ti_fun_heap) = lookup_ptr fun new_functions ti_fun_heap # (FI_Function {gf_fun_def}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap # si = { symb_ident=gf_fun_def.fun_ident, symb_kind=SK_GeneratedFunction fun_def_ptr fun } ti = { ti & ti_fun_heap = ti_fun_heap } = (gf_fun_def,si,ti) reannotate_producers group_nr group_members ti // determine if safe group # (safe,ti) = safe_producers group_nr group_members group_members ti | safe // if safe mark all members as safe = foldSt mark_producer_safe group_members ti = ti safe_producers group_nr group_members [] ti = (True,ti) safe_producers group_nr group_members [fun:funs] ti // look for occurrence of group_members in safe argument position of fun RHS // i.e. linearity ok && ... #! (fun_def, ti) = get_fun_def fun ti {fun_body = TransformedBody tb} = fun_def fun_body = tb.tb_rhs #! prs = { prs_group = group_members , prs_cons_args = ti.ti_cons_args , prs_main_dcl_module_n = main_dcl_module_n , prs_fun_heap = ti.ti_fun_heap , prs_fun_defs = ti.ti_fun_defs , prs_group_index = group_nr } # (safe,prs) = producerRequirements fun_body prs // # prs = prs ---> ("producerRequirements",fun_def.fun_ident,fun,group_nr,safe,fun_body) #! ti = {ti & ti_fun_defs = prs.prs_fun_defs, ti_fun_heap = prs.prs_fun_heap, ti_cons_args = prs.prs_cons_args} // put back prs info into ti? | safe //-!-> ("producerRequirements",fun_def.fun_ident,safe) = safe_producers group_nr group_members funs ti = (safe,ti) mark_producer_safe fun ti=:{ti_fun_defs} // update cc_prod for fun | fun < size ti_fun_defs = {ti & ti_cons_args.[fun].cc_producer = pIsSafe} # (fun_def_ptr,ti_fun_heap) = lookup_ptr fun ti.ti_new_functions ti.ti_fun_heap with lookup_ptr fun [] ti_fun_heap = abort "drat" lookup_ptr fun [fun_def_ptr:new_functions] ti_fun_heap # (FI_Function {gf_fun_index}, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap | gf_fun_index == fun = (fun_def_ptr, ti_fun_heap) = lookup_ptr fun new_functions ti_fun_heap # (FI_Function gf, ti_fun_heap) = readPtr fun_def_ptr ti_fun_heap # ti_fun_heap = writePtr fun_def_ptr (FI_Function {gf & gf_cons_args.cc_producer = pIsSafe}) ti_fun_heap ti = { ti & ti_fun_heap = ti_fun_heap } = ti // ... DvA add_new_function_to_group :: !{# CommonDefs} !FunctionHeap !FunctionInfoPtr !(!*{!Group}, ![FunDef], ![ConsClasses], !*ImportedTypes, !ImportedConstructors, !*TypeHeaps, !*VarHeap) -> (!*{!Group}, ![FunDef], ![ConsClasses], !*ImportedTypes, !ImportedConstructors, !*TypeHeaps, !*VarHeap) add_new_function_to_group common_defs fun_heap fun_ptr (groups, fun_defs, cons_classes, imported_types, collected_imports, type_heaps, var_heap) # (FI_Function {gf_fun_def,gf_fun_index,gf_cons_args}) = sreadPtr fun_ptr fun_heap {fun_type = Yes ft=:{st_args,st_result}, fun_info = {fi_group_index,fi_properties}} = gf_fun_def ets = { ets_type_defs = imported_types , ets_collected_conses = collected_imports , ets_type_heaps = type_heaps , ets_var_heap = var_heap , ets_main_dcl_module_n = main_dcl_module_n , ets_contains_unexpanded_abs_syn_type = False } #! (_,(st_result,st_args), {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap}) = expandSynTypes (if (fi_properties bitand FI_HasTypeSpec == 0) (RemoveAnnotationsMask bitor ExpandAbstractSynTypesMask) ExpandAbstractSynTypesMask) common_defs (st_result,st_args) ets # ft = { ft & st_result = st_result, st_args = st_args } | fi_group_index >= size groups = abort ("add_new_function_to_group "+++ toString fi_group_index+++ "," +++ toString (size groups) +++ "," +++ toString gf_fun_index) # (group, groups) = groups![fi_group_index] | not (isMember gf_fun_index group.group_members) = abort ("add_new_function_to_group INSANE!\n" +++ toString gf_fun_index +++ "," +++ toString fi_group_index) # groups = {groups & [fi_group_index] = group} = (groups, [ { gf_fun_def & fun_type = Yes ft} : fun_defs], [gf_cons_args:cons_classes], ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) convert_function_type common_defs fun_index (fun_defs, imported_types, collected_imports, fun_indices_with_abs_syn_types, type_heaps, var_heap) # (fun_def=:{fun_type = Yes fun_type, fun_info = {fi_properties}}, fun_defs) = fun_defs![fun_index] rem_annot = fi_properties bitand FI_HasTypeSpec == 0 (fun_type,contains_unexpanded_abs_syn_type,imported_types, collected_imports, type_heaps, var_heap) = convertSymbolType_ (if rem_annot RemoveAnnotationsMask 0) common_defs fun_type main_dcl_module_n imported_types collected_imports type_heaps var_heap # fun_def = { fun_def & fun_type = Yes fun_type } fun_defs = { fun_defs & [fun_index] = fun_def } | contains_unexpanded_abs_syn_type = (fun_defs, imported_types, collected_imports, [fun_index : fun_indices_with_abs_syn_types], type_heaps, var_heap) = (fun_defs, imported_types, collected_imports, fun_indices_with_abs_syn_types, type_heaps, var_heap) expand_abstract_syn_types_in_function_type :: !{#.CommonDefs} !.Int !*(!*{#FunDef},!*{#{#.(TypeDef .TypeRhs)}},![(Global .Int)],!*TypeHeaps,!*(Heap VarInfo)) -> (!*{#FunDef},!.{#{#(TypeDef .TypeRhs)}},![(Global Int)],!.TypeHeaps,!.(Heap VarInfo)) expand_abstract_syn_types_in_function_type common_defs fun_index (fun_defs, imported_types, collected_imports, type_heaps, var_heap) # (fun_def=:{fun_type = Yes fun_type, fun_info = {fi_properties}}, fun_defs) = fun_defs![fun_index] rem_annot = fi_properties bitand FI_HasTypeSpec == 0 (fun_type,contains_unexpanded_abs_syn_type,imported_types, collected_imports, type_heaps, var_heap) = convertSymbolType_ (if rem_annot (RemoveAnnotationsMask bitor ExpandAbstractSynTypesMask) ExpandAbstractSynTypesMask) common_defs fun_type main_dcl_module_n imported_types collected_imports type_heaps var_heap fun_def = { fun_def & fun_type = Yes fun_type} fun_defs = { fun_defs & [fun_index] = fun_def } = (fun_defs, imported_types, collected_imports, type_heaps, var_heap) //@ convertSymbolType RemoveAnnotationsMask:==1 ExpandAbstractSynTypesMask:==2 DontCollectImportedConstructors:==4 convertSymbolType :: !Bool !{# CommonDefs} !SymbolType !Int !*ImportedTypes !ImportedConstructors !*TypeHeaps !*VarHeap -> (!SymbolType, !*ImportedTypes, !ImportedConstructors, !*TypeHeaps, !*VarHeap) convertSymbolType rem_annots common_defs st main_dcl_module_n imported_types collected_imports type_heaps var_heap # (st, ets_contains_unexpanded_abs_syn_type,ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) = convertSymbolType_ (if rem_annots (RemoveAnnotationsMask bitor ExpandAbstractSynTypesMask) ExpandAbstractSynTypesMask) common_defs st main_dcl_module_n imported_types collected_imports type_heaps var_heap = (st, ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) convertSymbolTypeWithoutCollectingImportedConstructors :: !Bool !{# CommonDefs} !SymbolType !Int !*ImportedTypes !*TypeHeaps !*VarHeap -> (!SymbolType, !*ImportedTypes, !*TypeHeaps, !*VarHeap) convertSymbolTypeWithoutCollectingImportedConstructors rem_annots common_defs st main_dcl_module_n imported_types type_heaps var_heap # (st, ets_contains_unexpanded_abs_syn_type,ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) = convertSymbolType_ (if rem_annots (RemoveAnnotationsMask bitor ExpandAbstractSynTypesMask bitor DontCollectImportedConstructors) (ExpandAbstractSynTypesMask bitor DontCollectImportedConstructors)) common_defs st main_dcl_module_n imported_types [] type_heaps var_heap = (st, ets_type_defs, ets_type_heaps, ets_var_heap) convertSymbolType_ :: !Int !{# CommonDefs} !SymbolType !Int !*ImportedTypes !ImportedConstructors !*TypeHeaps !*VarHeap -> (!SymbolType, !Bool,!*ImportedTypes, !ImportedConstructors, !*TypeHeaps, !*VarHeap) convertSymbolType_ rem_annots common_defs st main_dcl_module_n imported_types collected_imports type_heaps var_heap # ets = { ets_type_defs = imported_types , ets_collected_conses = collected_imports , ets_type_heaps = type_heaps , ets_var_heap = var_heap , ets_main_dcl_module_n = main_dcl_module_n , ets_contains_unexpanded_abs_syn_type = False } # {st_args,st_result,st_context,st_args_strictness} = st #! (_,(st_args,st_result), ets) = expandSynTypes rem_annots common_defs (st_args,st_result) ets # new_st_args = addTypesOfDictionaries common_defs st_context st_args new_st_arity = length new_st_args st = { st & st_args = new_st_args , st_result = st_result , st_arity = new_st_arity , st_args_strictness = insert_n_strictness_values_at_beginning (new_st_arity-length st_args) st_args_strictness , st_context = [] } # {ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap,ets_contains_unexpanded_abs_syn_type} = ets = (st, ets_contains_unexpanded_abs_syn_type, ets_type_defs, ets_collected_conses, ets_type_heaps, ets_var_heap) //@ addTypesOfDictionaries addTypesOfDictionaries :: !{#CommonDefs} ![TypeContext] ![AType] -> [AType] addTypesOfDictionaries common_defs type_contexts type_args = mapAppend (add_types_of_dictionary common_defs) type_contexts type_args where add_types_of_dictionary common_defs {tc_class = TCGeneric {gtc_dictionary={glob_module,glob_object={ds_ident,ds_index}}}, tc_types} /* AA HACK: Generic classes are always generated locally, and therefore the their dictionaries are also generated localy. Overloaded functions in DCL modules can have generic context restrictions, i.e. they will get generic class dictionaries. Problem: DCL function types refer to ICL type defs of dictionaries. Solution: plug a dummy dictinary type, defined in StdGeneric. It is possible because all generic class have one class argument and one member. */ # dict_type_symb = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident 1 # type_arg = { at_attribute = TA_Multi, at_type=hd tc_types } = {at_attribute = TA_Multi, at_type = TA dict_type_symb [type_arg]} add_types_of_dictionary common_defs {tc_class = TCClass {glob_module, glob_object={ds_index,ds_ident}}, tc_types} # {class_arity, class_dictionary={ds_ident,ds_index}, class_cons_vars} = common_defs.[glob_module].com_class_defs.[ds_index] # dict_type_symb = MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident class_arity = { at_attribute = TA_Multi, /* at_annotation = AN_Strict, */ at_type = TA dict_type_symb ( // map (\type -> { at_attribute = TA_Multi, at_annotation = AN_None, at_type = type }) tc_types) } fst (mapSt (\type class_cons_vars -> let at_attribute = if (lowest_bit class_cons_vars) TA_MultiOfPropagatingConsVar TA_Multi in ( { at_attribute = at_attribute, at_type = type }, class_cons_vars>>1) ) tc_types class_cons_vars))} lowest_bit int :== int bitand 1 <> 0 //@ expandSynTypes :: ExpandTypeState = { ets_type_defs :: !.{#{#CheckedTypeDef}} , ets_collected_conses :: !ImportedConstructors , ets_type_heaps :: !.TypeHeaps , ets_var_heap :: !.VarHeap , ets_main_dcl_module_n :: !Int , ets_contains_unexpanded_abs_syn_type :: !Bool } class expandSynTypes a :: !Int !{# CommonDefs} !a !*ExpandTypeState -> (!Bool,!a, !*ExpandTypeState) instance expandSynTypes Type where expandSynTypes rem_annots common_defs type=:(arg_type --> res_type) ets # (changed,(arg_type, res_type), ets) = expandSynTypes rem_annots common_defs (arg_type, res_type) ets | changed = (True,arg_type --> res_type, ets) = (False,type, ets) expandSynTypes rem_annots common_defs type=:(TB _) ets = (False,type, ets) expandSynTypes rem_annots common_defs type=:(cons_var :@: types) ets # (changed,types, ets) = expandSynTypes rem_annots common_defs types ets | changed = (True,cons_var :@: types, ets) = (False,type, ets) expandSynTypes rem_annots common_defs type=:(TA type_symb types) ets = expand_syn_types_in_TA rem_annots common_defs type TA_Multi ets expandSynTypes rem_annots common_defs type=:(TAS type_symb types _) ets = expand_syn_types_in_TA rem_annots common_defs type TA_Multi ets expandSynTypes rem_annots common_defs tfa_type=:(TFA vars type) ets # (changed,type, ets) = expandSynTypes rem_annots common_defs type ets | changed = (True,TFA vars type, ets) = (False,tfa_type, ets) expandSynTypes rem_annots common_defs type ets = (False,type, ets) instance expandSynTypes [a] | expandSynTypes a where expandSynTypes rem_annots common_defs [] ets = (False,[],ets) expandSynTypes rem_annots common_defs t=:[type:types] ets #! (changed_type,type,ets) = expandSynTypes rem_annots common_defs type ets (changed_types,types,ets) = expandSynTypes rem_annots common_defs types ets | changed_type || changed_types = (True,[type:types],ets) = (False,t,ets) instance expandSynTypes (a,b) | expandSynTypes a & expandSynTypes b where expandSynTypes rem_annots common_defs (type1,type2) ets #! (changed_type1,type1,ets) = expandSynTypes rem_annots common_defs type1 ets (changed_type2,type2,ets) = expandSynTypes rem_annots common_defs type2 ets = (changed_type1 || changed_type2,(type1,type2),ets) instance expandSynTypes AType where expandSynTypes rem_annots common_defs atype ets = expand_syn_types_in_a_type rem_annots common_defs atype ets where expand_syn_types_in_a_type :: !.Int !{#.CommonDefs} !.AType !*ExpandTypeState -> (!.Bool,!AType,!.ExpandTypeState) expand_syn_types_in_a_type rem_annots common_defs atype=:{at_type = at_type=: TA type_symb types,at_attribute} ets # (changed,at_type, ets) = expand_syn_types_in_TA rem_annots common_defs at_type at_attribute ets | changed = (True,{ atype & at_type = at_type }, ets) = (False,atype,ets) expand_syn_types_in_a_type rem_annots common_defs atype=:{at_type = at_type=: TAS type_symb types _,at_attribute} ets # (changed,at_type, ets) = expand_syn_types_in_TA rem_annots common_defs at_type at_attribute ets | changed = (True,{ atype & at_type = at_type }, ets) = (False,atype,ets) expand_syn_types_in_a_type rem_annots common_defs atype ets # (changed,at_type, ets) = expandSynTypes rem_annots common_defs atype.at_type ets | changed = (True,{ atype & at_type = at_type }, ets) = (False,atype,ets) expand_syn_types_in_TA :: !.Int !{#.CommonDefs} !.Type !.TypeAttribute !*ExpandTypeState -> (!Bool,!Type,!.ExpandTypeState) expand_syn_types_in_TA rem_annots common_defs ta_type attribute ets=:{ets_type_defs} # (glob_object,glob_module,types) = case ta_type of (TA type_symb=:{type_index={glob_object,glob_module},type_ident} types) -> (glob_object,glob_module,types) (TAS type_symb=:{type_index={glob_object,glob_module},type_ident} types strictness) -> (glob_object,glob_module,types) # ({td_rhs,td_ident,td_args,td_attribute},ets_type_defs) = ets_type_defs![glob_module].[glob_object] ets = { ets & ets_type_defs = ets_type_defs } = case td_rhs of SynType rhs_type # (type,ets_type_heaps) = bind_and_substitute_before_expand types td_args td_attribute rhs_type rem_annots attribute ets.ets_type_heaps # (_,type,ets) = expandSynTypes rem_annots common_defs type { ets & ets_type_heaps = ets_type_heaps } -> (True,type,ets) AbstractSynType _ rhs_type | (rem_annots bitand ExpandAbstractSynTypesMask)<>0 # (type,ets_type_heaps) = bind_and_substitute_before_expand types td_args td_attribute rhs_type rem_annots attribute ets.ets_type_heaps # (_,type,ets) = expandSynTypes rem_annots common_defs type { ets & ets_type_heaps = ets_type_heaps } -> (True,type,ets) # ets = {ets & ets_contains_unexpanded_abs_syn_type=True } #! (changed,types, ets) = expandSynTypes rem_annots common_defs types ets # ta_type = if changed ( case ta_type of TA type_symb _ -> TA type_symb types TAS type_symb _ strictness -> TAS type_symb types strictness ) ta_type | glob_module == ets.ets_main_dcl_module_n -> (changed,ta_type, ets) -> (changed,ta_type, collect_imported_constructors common_defs glob_module td_rhs ets) _ #! (changed,types, ets) = expandSynTypes rem_annots common_defs types ets # ta_type = if changed ( case ta_type of TA type_symb _ -> TA type_symb types TAS type_symb _ strictness -> TAS type_symb types strictness ) ta_type | glob_module == ets.ets_main_dcl_module_n || (rem_annots bitand DontCollectImportedConstructors)<>0 -> (changed,ta_type, ets) -> (changed,ta_type, collect_imported_constructors common_defs glob_module td_rhs ets) where bind_and_substitute_before_expand types td_args td_attribute rhs_type rem_annots attribute ets_type_heaps # ets_type_heaps = bind_attr td_attribute attribute ets_type_heaps ets_type_heaps = (fold2St bind_var_and_attr td_args types ets_type_heaps) (type, ets_type_heaps) = substitute_rhs rem_annots rhs_type.at_type ets_type_heaps = (type, ets_type_heaps) where bind_var_and_attr { atv_attribute = TA_Var {av_info_ptr}, atv_variable = {tv_info_ptr} } {at_attribute,at_type} type_heaps=:{th_vars,th_attrs} = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type), th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr at_attribute) } bind_var_and_attr { atv_variable = {tv_info_ptr}} {at_type} type_heaps=:{th_vars} = { type_heaps & th_vars = th_vars <:= (tv_info_ptr, TVI_Type at_type) } bind_attr (TA_Var {av_info_ptr}) attribute type_heaps=:{th_attrs} = { type_heaps & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr attribute) } bind_attr _ attribute type_heaps = type_heaps substitute_rhs rem_annots rhs_type type_heaps | (rem_annots bitand RemoveAnnotationsMask)<>0 # (_, rhs_type) = removeAnnotations rhs_type = substitute rhs_type type_heaps = substitute rhs_type type_heaps collect_imported_constructors :: !{#.CommonDefs} !.Int !.TypeRhs !*ExpandTypeState -> .ExpandTypeState collect_imported_constructors common_defs mod_index (RecordType {rt_constructor}) ets=:{ets_collected_conses,ets_var_heap} # (ets_collected_conses, ets_var_heap) = collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs rt_constructor (ets_collected_conses, ets_var_heap) = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } collect_imported_constructors common_defs mod_index (AlgType constructors) ets=:{ets_collected_conses,ets_var_heap} # (ets_collected_conses, ets_var_heap) = foldSt (collect_imported_constructor mod_index common_defs.[mod_index].com_cons_defs) constructors (ets_collected_conses, ets_var_heap) = { ets & ets_collected_conses = ets_collected_conses, ets_var_heap = ets_var_heap } collect_imported_constructors common_defs mod_index _ ets = ets collect_imported_constructor :: !.Int !{#.ConsDef} !.DefinedSymbol !*(!u:[v:(Global .Int)],!*(Heap VarInfo)) -> (!w:[x:(Global Int)],!.(Heap VarInfo)), [u <= w,v <= x] collect_imported_constructor mod_index cons_defs {ds_index} (collected_conses, var_heap) # {cons_type_ptr} = cons_defs.[ds_index] (type_info, var_heap) = readVarInfo cons_type_ptr var_heap | has_been_collected type_info = (collected_conses, var_heap) = ([{ glob_module = mod_index, glob_object = ds_index } : collected_conses ], writeVarInfo cons_type_ptr VI_Used var_heap) where has_been_collected VI_Used = True has_been_collected (VI_ExpandedType _) = True has_been_collected _ = False //@ freeVariables class clearVariables expr :: !expr !*VarHeap -> *VarHeap instance clearVariables [a] | clearVariables a where clearVariables list fvi = foldSt clearVariables list fvi instance clearVariables LetBind where clearVariables {lb_src} fvi = clearVariables lb_src fvi instance clearVariables (Bind a b) | clearVariables a where clearVariables {bind_src} fvi = clearVariables bind_src fvi instance clearVariables (Optional a) | clearVariables a where clearVariables (Yes x) fvi = clearVariables x fvi clearVariables No fvi = fvi //XXX instance clearVariables BoundVar where clearVariables bound_var=:{var_info_ptr} var_heap # (var_info, var_heap) = readVarInfo var_info_ptr var_heap = case var_info of (VI_UsedVar _) -> writeVarInfo var_info_ptr VI_Empty var_heap VI_LocalVar -> writeVarInfo var_info_ptr VI_Empty var_heap VI_Empty -> var_heap VI_Count _ _ -> abort "VI_Count" VI_Expression _ -> writeVarInfo var_info_ptr VI_Empty var_heap //abort "VI_Expression" VI_Body _ _ _ -> abort "VI_Body" VI_Dictionary _ _ _ -> writeVarInfo var_info_ptr VI_Empty var_heap //abort "VI_Dictionary" VI_Occurrence _ -> abort "VI_Occurrence" VI_Variable _ _ -> writeVarInfo var_info_ptr VI_Empty var_heap //abort "VI_Variable" VI_AccVar _ _ -> writeVarInfo var_info_ptr VI_Empty var_heap //abort "VI_AccVar" VI_Used -> abort "VI_Used" VI_ExpandedType _ -> abort "VI_ExpandedType" v -> abort "unexpected VI type in clearVariables\n" instance clearVariables Expression where clearVariables (Var var) fvi = clearVariables var fvi clearVariables (App {app_args}) fvi = clearVariables app_args fvi clearVariables (fun @ args) fvi = clearVariables args (clearVariables fun fvi) clearVariables (Let {let_strict_binds,let_lazy_binds,let_expr}) fvi # fvi = clearVariables let_strict_binds fvi fvi = clearVariables let_lazy_binds fvi fvi = clearVariables let_expr fvi = fvi clearVariables (Case {case_expr,case_guards,case_default}) fvi # fvi = clearVariables case_expr fvi fvi = clearVariables case_guards fvi fvi = clearVariables case_default fvi = fvi clearVariables (Selection _ expr selectors) fvi = clearVariables expr (clearVariables selectors fvi) clearVariables (Update expr1 selectors expr2) fvi = clearVariables expr2 (clearVariables selectors (clearVariables expr1 fvi)) clearVariables (RecordUpdate cons_symbol expression expressions) fvi = clearVariables expression (clearVariables expressions fvi) clearVariables (TupleSelect _ arg_nr expr) fvi = clearVariables expr fvi clearVariables (MatchExpr _ expr) fvi = clearVariables expr fvi clearVariables EE fvi = fvi clearVariables _ fvi = fvi instance clearVariables CasePatterns where clearVariables (AlgebraicPatterns _ alg_patterns) fvi = foldSt clearVariables alg_patterns fvi clearVariables (BasicPatterns _ basic_patterns) fvi = foldSt clearVariables basic_patterns fvi clearVariables (OverloadedListPatterns _ _ alg_patterns) fvi = foldSt clearVariables alg_patterns fvi instance clearVariables BasicPattern where clearVariables {bp_expr} fvi = clearVariables bp_expr fvi instance clearVariables AlgebraicPattern where clearVariables {ap_vars, ap_expr} fvi = clearVariables ap_expr fvi instance clearVariables Selection where clearVariables (RecordSelection _ _) fvi = fvi clearVariables (ArraySelection _ _ expr) fvi = clearVariables expr fvi clearVariables (DictionarySelection dict_var selections _ expr) fvi = clearVariables dict_var (clearVariables selections (clearVariables expr fvi)) //////////////// :: FreeVarInfo = { fvi_var_heap :: !.VarHeap , fvi_expr_heap :: !.ExpressionHeap , fvi_variables :: ![BoundVar] , fvi_expr_ptrs :: ![ExprInfoPtr] } class freeVariables expr :: !expr !*FreeVarInfo -> *FreeVarInfo instance freeVariables [a] | freeVariables a where freeVariables list fvi = foldSt freeVariables list fvi instance freeVariables LetBind where freeVariables {lb_src} fvi = freeVariables lb_src fvi instance freeVariables (Bind a b) | freeVariables a where freeVariables {bind_src} fvi = freeVariables bind_src fvi instance freeVariables (Optional a) | freeVariables a where freeVariables (Yes x) fvi = freeVariables x fvi freeVariables No fvi = fvi //XXX instance freeVariables BoundVar where freeVariables bound_var=:{var_info_ptr} fvi=:{fvi_var_heap, fvi_variables} # (var_info, fvi_var_heap) = readVarInfo var_info_ptr fvi_var_heap (fvi_variables, fvi_var_heap) = adjust_var_info bound_var var_info fvi_variables fvi_var_heap = {fvi & fvi_variables = fvi_variables, fvi_var_heap = fvi_var_heap } where adjust_var_info _ (VI_UsedVar _) fvi_variables fvi_var_heap = (fvi_variables, fvi_var_heap) adjust_var_info bound_var=:{var_ident} _ fvi_variables fvi_var_heap = ([bound_var : fvi_variables], writeVarInfo var_info_ptr (VI_UsedVar var_ident) fvi_var_heap) instance freeVariables Expression where freeVariables (Var var) fvi = freeVariables var fvi freeVariables (App {app_args}) fvi = freeVariables app_args fvi freeVariables (fun @ args) fvi = freeVariables args (freeVariables fun fvi) freeVariables (Let {let_strict_binds,let_lazy_binds,let_expr,let_info_ptr}) fvi=:{fvi_variables = global_variables} # let_binds = let_strict_binds ++ let_lazy_binds (removed_variables, fvi_var_heap) = removeVariables global_variables fvi.fvi_var_heap fvi = freeVariables let_binds { fvi & fvi_variables = [], fvi_var_heap = fvi_var_heap } {fvi_expr_heap, fvi_variables, fvi_var_heap, fvi_expr_ptrs} = freeVariables let_expr fvi (fvi_variables, fvi_var_heap) = removeLocalVariables [lb_dst \\ {lb_dst} <- let_binds] fvi_variables [] fvi_var_heap (unbound_variables, fvi_var_heap) = determineGlobalVariables fvi_variables fvi_var_heap (fvi_variables, fvi_var_heap) = restoreVariables removed_variables fvi_variables fvi_var_heap (let_info, fvi_expr_heap) = readPtr let_info_ptr fvi_expr_heap = { fvi & fvi_variables = fvi_variables , fvi_var_heap = fvi_var_heap , fvi_expr_heap = fvi_expr_heap , fvi_expr_ptrs = [let_info_ptr : fvi_expr_ptrs] } freeVariables (Case kees) fvi = freeVariablesOfCase kees fvi where freeVariablesOfCase {case_expr,case_guards,case_default, case_info_ptr} fvi=:{fvi_variables, fvi_var_heap} # (removed_variables, fvi_var_heap) = removeVariables fvi_variables fvi_var_heap fvi = free_variables_of_guards case_guards { fvi & fvi_variables = [], fvi_var_heap = fvi_var_heap } {fvi_expr_heap, fvi_variables, fvi_var_heap, fvi_expr_ptrs} = freeVariables case_default fvi (unbound_variables, fvi_var_heap) = determineGlobalVariables fvi_variables fvi_var_heap (fvi_variables, fvi_var_heap) = restoreVariables removed_variables fvi_variables fvi_var_heap (case_info, fvi_expr_heap) = readPtr case_info_ptr fvi_expr_heap = freeVariables case_expr { fvi & fvi_variables = fvi_variables, fvi_var_heap = fvi_var_heap, fvi_expr_heap = set_aci_free_vars_info_case unbound_variables case_info_ptr fvi_expr_heap, fvi_expr_ptrs = [case_info_ptr : fvi_expr_ptrs] } where free_variables_of_guards (AlgebraicPatterns _ alg_patterns) fvi = foldSt free_variables_of_alg_pattern alg_patterns fvi free_variables_of_guards (BasicPatterns _ basic_patterns) fvi = foldSt free_variables_of_basic_pattern basic_patterns fvi where free_variables_of_basic_pattern {bp_expr} fvi = freeVariables bp_expr fvi free_variables_of_guards (OverloadedListPatterns _ _ alg_patterns) fvi = foldSt free_variables_of_alg_pattern alg_patterns fvi free_variables_of_alg_pattern {ap_vars, ap_expr} fvi=:{fvi_variables} # fvi = freeVariables ap_expr { fvi & fvi_variables = [] } (fvi_variables, fvi_var_heap) = removeLocalVariables ap_vars fvi.fvi_variables fvi_variables fvi.fvi_var_heap = { fvi & fvi_var_heap = fvi_var_heap, fvi_variables = fvi_variables } freeVariables (Selection _ expr selectors) fvi = freeVariables selectors (freeVariables expr fvi) freeVariables (Update expr1 selectors expr2) fvi = freeVariables expr2 (freeVariables selectors (freeVariables expr1 fvi)) freeVariables (RecordUpdate cons_symbol expression expressions) fvi = freeVariables expressions (freeVariables expression fvi) freeVariables (TupleSelect _ arg_nr expr) fvi = freeVariables expr fvi freeVariables (MatchExpr _ expr) fvi = freeVariables expr fvi freeVariables EE fvi = fvi freeVariables _ fvi = fvi instance freeVariables Selection where freeVariables (RecordSelection _ _) fvi = fvi freeVariables (ArraySelection _ _ expr) fvi = freeVariables expr fvi freeVariables (DictionarySelection dict_var selections _ expr) fvi = freeVariables dict_var (freeVariables selections (freeVariables expr fvi)) removeVariables global_variables var_heap = foldSt remove_variable global_variables ([], var_heap) where remove_variable v=:{var_info_ptr} (removed_variables, var_heap) # (VI_UsedVar used_var, var_heap) = readVarInfo var_info_ptr var_heap = ([(v, used_var) : removed_variables], writeVarInfo var_info_ptr VI_Empty var_heap) restoreVariables removed_variables global_variables var_heap = foldSt restore_variable removed_variables (global_variables, var_heap) where restore_variable (v=:{var_info_ptr}, var_id) (restored_variables, var_heap) # (var_info, var_heap) = readVarInfo var_info_ptr var_heap = case var_info of VI_UsedVar _ -> (restored_variables, var_heap) _ -> ([ v : restored_variables ], writeVarInfo var_info_ptr (VI_UsedVar var_id) var_heap) determineGlobalVariables global_variables var_heap = foldSt determine_global_variable global_variables ([], var_heap) where determine_global_variable {var_info_ptr} (global_variables, var_heap) # (VI_UsedVar v_name, var_heap) = readVarInfo var_info_ptr var_heap = ([{var_ident = v_name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr} : global_variables], var_heap) removeLocalVariables local_variables all_variables global_variables var_heap # var_heap = foldSt mark_local_var local_variables var_heap = foldSt filter_local_var all_variables (global_variables, var_heap) where mark_local_var {fv_info_ptr} var_heap = writeVarInfo fv_info_ptr VI_LocalVar var_heap filter_local_var v=:{var_info_ptr} (global_vars, var_heap) # (var_info, var_heap) = readVarInfo var_info_ptr var_heap = case var_info of VI_LocalVar -> (global_vars, var_heap) _ -> ([ v : global_vars ], var_heap) /* isYes (Yes _) = True isYes _ = False */ //@ producerRequirements :: *PRState = { prs_group :: ![Int] , prs_cons_args :: !*{!ConsClasses} , prs_main_dcl_module_n :: !Int , prs_fun_heap :: !*FunctionHeap , prs_fun_defs :: !*{#FunDef} , prs_group_index :: !Int } class producerRequirements a :: !a !*PRState -> *(!Bool,!*PRState) instance producerRequirements [a] | producerRequirements a where producerRequirements [] prs = (True,prs) producerRequirements [x:xs] prs # (safe,prs) = producerRequirements x prs | safe = producerRequirements xs prs = (safe,prs) instance producerRequirements Expression where producerRequirements (Var var) prs = (True,prs) producerRequirements (App {app_symb={symb_kind=(SK_Constructor _)},app_args}) prs = producerRequirements app_args prs producerRequirements app=:(App {app_symb,app_args}) prs /* # (rec,prs) = is_recursive_app app prs | not rec = producerRequirements app_args prs */ // look up consumer class for app_symb args #! (maybe_ca,prs) = retrieve_consumer_args app_symb prs // need to check for recursive call in safe arg... = case maybe_ca of No // assuming that for functions that have no consumer info no unfolding will occur // note that this means that generated functions must be visible this way... // # prs = prs ---> ("No cons info for",app_symb) -> (True,prs) Yes ca // for each arg: // if safe && top of arg is App of group member... // else recurse into arg // # prs = prs ---> ("Yes cons info for",app_symb,ca.cc_args,ca.cc_linear_bits) -> check_app_arguments ca.cc_args ca.cc_linear_bits app_args prs where check_app_arguments [cc_arg:cc_args] [cc_linear_bit:cc_bits] [app_arg:app_args] prs | cc_arg == CActive && cc_linear_bit # (rec,prs) = is_recursive_app app_arg prs | rec = (False,prs) # (safe,prs)= producerRequirements app_arg prs | safe = check_app_arguments cc_args cc_bits app_args prs = (safe,prs) # (safe,prs) = producerRequirements app_arg prs | safe = check_app_arguments cc_args cc_bits app_args prs = (safe,prs) check_app_arguments _ _ _ prs = (True,prs) is_recursive_app (App {app_symb}) prs // check if app_symb member of prs_group # {symb_kind} = app_symb #! main_dcl_module_n = prs.prs_main_dcl_module_n # { glob_module, glob_object } = case symb_kind of SK_Function global_index -> global_index SK_LocalMacroFunction index -> { glob_module = main_dcl_module_n, glob_object = index } SK_GeneratedFunction info_ptr index -> { glob_module = main_dcl_module_n, glob_object = index } _ -> {glob_module = -1, glob_object = -1} | glob_module <> main_dcl_module_n = (False,prs) #! (fun_def,fun_defs,fun_heap) = get_fun_def symb_kind prs.prs_main_dcl_module_n prs.prs_fun_defs prs.prs_fun_heap prs = {prs & prs_fun_defs = fun_defs, prs_fun_heap = fun_heap} rec = fun_def.fun_info.fi_group_index == prs.prs_group_index = (rec,prs) is_recursive_app _ prs = (False,prs) producerRequirements (fun_expr @ exprs) prs // recurse # (safe,prs) = producerRequirements fun_expr prs | safe = producerRequirements exprs prs = (safe,prs) producerRequirements (Let {let_strict_binds,let_lazy_binds,let_expr}) prs // watch out for function shadowing by 'let' binds // recurse into binding exprs // continue with 'in' body # (safe,prs) = producerRequirements let_lazy_binds prs | not safe = (safe,prs) # (safe,prs) = producerRequirements let_strict_binds prs | not safe = (safe,prs) # (safe,prs) = producerRequirements let_expr prs | not safe = (safe,prs) = (safe,prs) producerRequirements (Case {case_expr,case_guards,case_default,case_ident}) prs // watch out for function shadowing by guards or case ident // check case_expr # (safe,prs) = producerRequirements case_expr prs | not safe = (safe,prs) // check case_guards # (safe,prs) = producerRequirements case_guards prs | not safe = (safe,prs) // check case_default # (safe,prs) = producerRequirements case_default prs | not safe = (safe,prs) = (True,prs) producerRequirements (Selection _ expr sels) prs # (safe,prs) = producerRequirements expr prs | safe = producerRequirements sels prs = (safe,prs) producerRequirements (Update expr1 sels expr2) prs # (safe,prs) = producerRequirements expr1 prs | not safe = (safe,prs) # (safe,prs) = producerRequirements expr2 prs | not safe = (safe,prs) # (safe,prs) = producerRequirements sels prs | not safe = (safe,prs) = (True,prs) producerRequirements (RecordUpdate _ expr exprs) prs // ... # (safe,prs) = producerRequirements expr prs | safe = producerFieldRequirements exprs prs = (safe,prs) where producerFieldRequirements [] prs = (True,prs) producerFieldRequirements [{bind_src}:fields] prs # (safe,prs) = producerRequirements bind_src prs | safe = producerFieldRequirements fields prs = (safe,prs) producerRequirements (TupleSelect _ _ expr) prs = producerRequirements expr prs producerRequirements (BasicExpr _) prs = (True,prs) producerRequirements (AnyCodeExpr _ _ _) prs = (False,prs) producerRequirements (ABCCodeExpr _ _) prs = (False,prs) producerRequirements (MatchExpr _ expr) prs = producerRequirements expr prs producerRequirements (DynamicExpr _) prs = (False,prs) producerRequirements (TypeCodeExpression _) prs = (False,prs) producerRequirements (EE) prs = (False,prs) producerRequirements (NoBind var) prs = (True,prs) producerRequirements (FailExpr _) prs = (True,prs) producerRequirements expr prs = abort ("producerRequirements " ---> expr) instance producerRequirements (Optional a) | producerRequirements a where producerRequirements (Yes x) prs = producerRequirements x prs producerRequirements No prs = (True,prs) instance producerRequirements CasePatterns where producerRequirements (AlgebraicPatterns index patterns) prs // name shadowing... # (safe,prs) = producerRequirements patterns prs = (safe,prs) producerRequirements (BasicPatterns type patterns) prs // name shadowing... # (safe,prs) = producerRequirements patterns prs = (safe,prs) producerRequirements (OverloadedListPatterns _ _ patterns) prs // name shadowing... # (safe,prs) = producerRequirements patterns prs = (safe,prs) producerRequirements (DynamicPatterns patterns) prs //...disallow for now... = (False,prs) producerRequirements NoPattern prs = (True,prs) instance producerRequirements AlgebraicPattern where producerRequirements {ap_expr} prs // name shadowing... = producerRequirements ap_expr prs instance producerRequirements BasicPattern where producerRequirements {bp_expr} prs // name shadowing... = producerRequirements bp_expr prs instance producerRequirements LetBind where producerRequirements {lb_src} prs = producerRequirements lb_src prs instance producerRequirements Selection where producerRequirements (RecordSelection _ _) prs = (True,prs) producerRequirements (ArraySelection _ _ expr) prs = producerRequirements expr prs producerRequirements (DictionarySelection _ sels _ expr) prs # (safe,prs) = producerRequirements expr prs | safe = producerRequirements sels prs = (safe,prs) //@ fun_def & cons_arg getters... get_fun_def :: !SymbKind !Int !u:{#FunDef} !*FunctionHeap -> (!FunDef, !u:{#FunDef}, !*FunctionHeap) get_fun_def (SK_Function {glob_module, glob_object}) main_dcl_module_n fun_defs fun_heap | glob_module<>main_dcl_module_n = abort "sanity check 2 failed in module trans" # (fun_def, fun_defs) = fun_defs![glob_object] = (fun_def, fun_defs, fun_heap) get_fun_def (SK_LocalMacroFunction glob_object) main_dcl_module_n fun_defs fun_heap # (fun_def, fun_defs) = fun_defs![glob_object] = (fun_def, fun_defs, fun_heap) get_fun_def (SK_GeneratedFunction fun_ptr _) main_dcl_module_n fun_defs fun_heap # (FI_Function {gf_fun_def}, fun_heap) = readPtr fun_ptr fun_heap = (gf_fun_def, fun_defs, fun_heap) get_fun_def_and_cons_args :: !SymbKind !v:{!ConsClasses} !u:{# FunDef} !*FunctionHeap -> (!FunDef, !ConsClasses, !w:{!ConsClasses}, !u:{# FunDef}, !*FunctionHeap), [v <= w] get_fun_def_and_cons_args (SK_Function {glob_object}) cons_args fun_defs fun_heap // | glob_object >= size fun_defs // = abort "get_fun_def_and_cons_args:SK_Function" # (fun_def, fun_defs) = fun_defs![glob_object] # (fun_args, cons_args) = cons_args![glob_object] = (fun_def, fun_args, cons_args, fun_defs, fun_heap) get_fun_def_and_cons_args (SK_LocalMacroFunction glob_object) cons_args fun_defs fun_heap // | glob_object >= size fun_defs // = abort "get_fun_def_and_cons_args:SK_LocalMacroFunction" # (fun_def, fun_defs) = fun_defs![glob_object] # (fun_args, cons_args) = cons_args![glob_object] = (fun_def, fun_args, cons_args, fun_defs, fun_heap) get_fun_def_and_cons_args (SK_GeneratedFunction fun_info_ptr fun_index) cons_args fun_defs fun_heap | fun_index < size fun_defs # (fun_def, fun_defs) = fun_defs![fun_index] // | fun_index >= size cons_args // = abort "get_fun_def_and_cons_args:cons_args" # (fun_args, cons_args) = cons_args![fun_index] = (fun_def, fun_args, cons_args, fun_defs, fun_heap) # (FI_Function {gf_fun_def, gf_cons_args}, fun_heap) = readPtr fun_info_ptr fun_heap = (gf_fun_def, gf_cons_args, cons_args, fun_defs, fun_heap) retrieve_consumer_args :: !SymbIdent !*PRState -> (!Optional ConsClasses, !*PRState) retrieve_consumer_args si=:{symb_kind} prs=:{prs_cons_args, prs_main_dcl_module_n} # (prs_size, prs_cons_args) = usize prs_cons_args prs = {prs & prs_cons_args = prs_cons_args} = case symb_kind of SK_Function {glob_module, glob_object} | glob_module == prs_main_dcl_module_n && glob_object < prs_size # (cons_args,prs) = prs!prs_cons_args.[glob_object] -> (Yes cons_args,prs) -> (No,prs) -!-> ("r_c_a",si) SK_LocalMacroFunction glob_object | glob_object < prs_size # (cons_args,prs) = prs!prs_cons_args.[glob_object] -> (Yes cons_args,prs) -> (No,prs) -!-> ("r_c_a",si) SK_GeneratedFunction fun_ptr fun_index | fun_index < prs_size # (cons_args,prs) = prs!prs_cons_args.[fun_index] -> (Yes cons_args,prs) # (FI_Function {gf_cons_args}, fun_heap) = readPtr fun_ptr prs.prs_fun_heap # prs = {prs & prs_fun_heap = fun_heap} -> (Yes gf_cons_args,prs) // SK_Constructor cons_index sk -> (No -!-> ("Unexpected symbol kind: ", si, sk),prs) //@ <<< instance <<< Group where (<<<) file {group_members} = file <<< "Group: " <<< group_members instance <<< RootCaseMode where (<<<) file mode = case mode of NotRootCase -> file <<< "NotRootCase"; RootCase -> file <<< "RootCase"; RootCaseOfZombie -> file <<< "RootCaseOfZombie"; /* instance <<< InstanceInfo where (<<<) file (II_Node prods _ left right) = file <<< left <<< prods <<< right (<<<) file II_Empty = file */ // XXX /* instance <<< Producer where (<<<) file (PR_Function symbol _ index) = file <<< "(F)" <<< symbol.symb_ident (<<<) file (PR_GeneratedFunction symbol _ index) = file <<< "(G)" <<< symbol.symb_ident <<< index (<<<) file PR_Empty = file <<< 'E' (<<<) file (PR_Class app vars type) = file <<< "(Class(" <<< App app<<<","<<< type <<< "))" (<<<) file (PR_Curried {symb_ident, symb_kind} _) = file <<< "(Curried)" <<< symb_ident <<< symb_kind (<<<) file _ = file */ instance <<< {!a} | <<< a where (<<<) file array # file = file <<< "{" = showBody 0 (size array) array file where showBody i m a f | i >= m = f <<< "}" = showBody (inc i) m a (f <<< a.[i] <<< ", ") instance <<< Producer where (<<<) file PR_Empty = file <<< "(E)" (<<<) file PR_Unused = file <<< "(U)" (<<<) file (PR_Function ident int index) = file <<< "(F:" <<< ident <<< ")" (<<<) file (PR_Class app binds type) = file <<< "(O::" <<< app.app_symb <<< ")" (<<<) file (PR_Constructor ident int exprl) = file <<< "(C:" <<< ident <<< ")" (<<<) file (PR_GeneratedFunction ident int index) = file <<< "(G:" <<< ident <<< ")" (<<<) file (PR_Curried ident int) = file <<< "(P:" <<< ident <<< ")" instance <<< SymbKind where (<<<) file SK_Unknown = file <<< "(SK_Unknown)" (<<<) file (SK_Function gi) = file <<< "(SK_Function)" <<< gi (<<<) file (SK_IclMacro gi) = file <<< "(SK_IclMacro)" <<< gi (<<<) file (SK_LocalMacroFunction gi) = file <<< "(SK_LocalMacroFunction)" <<< gi (<<<) file (SK_DclMacro gi) = file <<< "(SK_DclMacro)" <<< gi (<<<) file (SK_LocalDclMacroFunction gi) = file <<< "(SK_LocalDclMacroFunction)" <<< gi (<<<) file (SK_OverloadedFunction gi) = file <<< "(SK_OverloadedFunction)" <<< gi (<<<) file (SK_GeneratedFunction _ gi) = file <<< "(SK_GeneratedFunction)" <<< gi (<<<) file (SK_Constructor gi) = file <<< "(SK_Constructor)" <<< gi (<<<) file (SK_Generic gi tk) = file <<< "(SK_Constructor)" <<< gi (<<<) file SK_TypeCode = file <<< "(SK_TypeCode)" (<<<) file _ = file <<< "(SK_UNKNOWN)" instance <<< ConsClasses where (<<<) file {cc_args,cc_linear_bits,cc_producer} = file <<< cc_args <<< cc_linear_bits <<< cc_producer instance <<< InstanceInfo where (<<<) file ii = (write_ii ii (file <<< "[")) <<< "]" where write_ii II_Empty file = file write_ii (II_Node producers _ l r) file # file = write_ii l file <<< "(" file = foldSt (\pr file -> file<< file <<< "SP_ParsedSubstitutions" (SP_Substitutions _) -> file <<< "SP_Substitutions" (SP_ContextTypes l) -> file <<< "(SP_ContextTypes: " <<< l <<< ")" (SP_FunIndex i) -> file <<< "(SP_FunIndex: " <<< i <<< ")" (SP_TypeOffset _) -> file <<< "SP_TypeOffset" SP_None -> file <<< "SP_None" instance <<< Special where (<<<) file {spec_index,spec_types,spec_vars,spec_attrs} = file <<< "spec_index" <<< spec_index <<< "spec_types" <<< spec_types <<< "spec_vars" <<< spec_vars <<< "spec_attrs" <<< spec_attrs instance <<< ExprInfo where (<<<) file EI_Empty = file <<< "EI_Empty" (<<<) file (EI_DictionaryType t) = file <<< "" // (<<<) file (EI_Instance symb exprs) = file <<< symb <<< exprs // (<<<) file (EI_Selection sels var_ptr exprs) = file <<< sels <<< var_ptr <<< exprs // (<<<) file (EI_Context exprs) = file <<< exprs (<<<) file _ = file <<< "EI_Other" instance <<< TypeContext where (<<<) file co = file <<< co.tc_class <<< " " <<< co.tc_types <<< " <" <<< co.tc_var <<< '>' resolveContext :: ![TypeContext] ![ExprInfo] -> [[Type]] resolveContext [tc:tcs] [EI_DictionaryType t:eis] = minimiseContext tc t ++ resolveContext tcs eis resolveContext _ _ = [] minimiseContext {tc_class = TCClass gds} (TA ti ts) # tc_index = {glob_module = gds.glob_module, glob_object = gds.glob_object.ds_index} | tc_index == ti.type_index = [[at_type \\ {at_type} <- ts]] = [] minimiseContext _ _ = [] findInstInSpecials :: ![[.Type]] ![.Special] -> .(!Int,!(Global Int)) findInstInSpecials insts [] = (0,{glob_object= -1,glob_module = -1}) findInstInSpecials insts [{spec_types,spec_index}:specials] | matchTypes insts spec_types = (length spec_types, spec_index) = findInstInSpecials insts specials matchTypes [] [] = True matchTypes [l:ls] [r:rs] = l == r && matchTypes ls rs matchTypes _ _ = False foundSpecial {glob_object= -1,glob_module = -1} = False foundSpecial _ = True // ...SPECIAL arity_warning msg symb_ident fun_index fun_arity ti | fun_arity <= 32 = ti = {ti & ti_error_file = ti.ti_error_file <<< "Warning: Arity > 32 " <<< msg <<< " " <<< fun_arity <<< " " <<< symb_ident <<< "@" <<< fun_index <<< "\n"} strip_universal_quantor :: SymbolType -> SymbolType strip_universal_quantor st=:{st_vars,st_args,st_result} # (st_result,st_vars) = strip st_result st_vars # (st_args,st_vars) = mapSt strip st_args st_vars = {st & st_vars = st_vars, st_args = st_args, st_result = st_result} where strip :: AType [TypeVar] -> (AType,[TypeVar]) strip atype=:{at_type = TFA vars type} tvs = ({atype & at_type = type}, map (\{atv_variable}->atv_variable) vars ++ tvs) strip atype tvs = (atype,tvs) mapOpt f [Yes a:x] = [Yes (f a):mapOpt f x] mapOpt f [No:x] = [No:mapOpt f x] mapOpt f [] = []