implementation module checkFunctionBodies import StdEnv, compare_types import syntax, typesupport, parse, checksupport, utilities, checktypes, transform, predef import explicitimports, comparedefimp from check import checkFunctions,checkDclMacros cIsInExpressionList :== True cIsNotInExpressionList :== False cEndWithUpdate :== True cEndWithSelection :== False cCaseExplicit :== True cCaseNotExplicit :== False :: Dynamics :== [ExprInfoPtr] :: ExpressionState = { es_expr_heap :: !.ExpressionHeap , es_var_heap :: !.VarHeap , es_type_heaps :: !.TypeHeaps , es_generic_heap :: !.GenericHeap , es_calls :: ![FunCall] , es_dynamics :: ![ExprInfoPtr] , es_fun_defs :: !.{# FunDef} } :: ExpressionInput = { ei_expr_level :: !Level , ei_fun_index :: !FunctionOrMacroIndex , ei_fun_level :: !Level , ei_mod_index :: !Index , ei_local_functions_index_offset :: !Int } :: PatternState = { ps_var_heap :: !.VarHeap , ps_fun_defs :: !.{#FunDef} } :: PatternInput = { pi_def_level :: !Int , pi_mod_index :: !Index , pi_is_node_pattern :: !Bool } :: ArrayPattern = { ap_opt_var :: !Optional (Bind Ident VarInfoPtr) , ap_array_var :: !FreeVar , ap_selections :: ![Bind FreeVar [ParsedExpr]] } :: UnfoldMacroState = { ums_var_heap :: !.VarHeap , ums_modules :: !.{# DclModule} , ums_cons_defs :: !.{# ConsDef} , ums_error :: !.ErrorAdmin } :: RecordKind = RK_Constructor | RK_Update get_unboxed_list_indices_and_decons_u_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState); get_unboxed_list_indices_and_decons_u_ident cs=:{cs_predef_symbols,cs_x} # (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def # (cons_u_index,cs_predef_symbols)=cs_predef_symbols![PD_cons_u].pds_def # (nil_u_index,cs_predef_symbols)=cs_predef_symbols![PD_nil_u].pds_def # (decons_u_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons_u] # decons_u_index=decons_u_symbol.pds_def # cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists} = (stdStrictLists_index,cons_u_index,decons_u_index,nil_u_index,predefined_idents.[PD_decons_u],cs) make_unboxed_list type_symbol expr_heap cs # (stdStrictLists_index,cons_u_index,decons_u_index,nil_u_index,decons_u_ident,cs) = get_unboxed_list_indices_and_decons_u_ident cs # unboxed_list=UnboxedList type_symbol stdStrictLists_index decons_u_index nil_u_index # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_u_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_u_index,glob_module=stdStrictLists_index}} # decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr} = (unboxed_list,decons_expr,expr_heap,cs) get_unboxed_tail_strict_list_indices_and_decons_uts_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState); get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs=:{cs_predef_symbols,cs_x} # (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def # (cons_uts_index,cs_predef_symbols)=cs_predef_symbols![PD_cons_uts].pds_def # (nil_uts_index,cs_predef_symbols)=cs_predef_symbols![PD_nil_uts].pds_def # (decons_uts_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons_uts] # decons_uts_index=decons_uts_symbol.pds_def # cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists} = (stdStrictLists_index,cons_uts_index,decons_uts_index,nil_uts_index,predefined_idents.[PD_decons_uts],cs) make_unboxed_tail_strict_list type_symbol expr_heap cs # (stdStrictLists_index,cons_uts_index,decons_uts_index,nil_uts_index,decons_uts_ident,cs) = get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs # unboxed_list=UnboxedTailStrictList type_symbol stdStrictLists_index decons_uts_index nil_uts_index # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_uts_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_uts_index,glob_module=stdStrictLists_index}} # decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr} = (unboxed_list,decons_expr,expr_heap,cs) get_overloaded_list_indices_and_decons_ident :: *CheckState -> (!Index,!Index,!Index,!Index,!Ident,!*CheckState); get_overloaded_list_indices_and_decons_ident cs=:{cs_predef_symbols,cs_x} # (stdStrictLists_index,cs_predef_symbols)=cs_predef_symbols![PD_StdStrictLists].pds_def # (cons_index,cs_predef_symbols)=cs_predef_symbols![PD_cons].pds_def # (nil_index,cs_predef_symbols)=cs_predef_symbols![PD_nil].pds_def # (decons_symbol,cs_predef_symbols)=cs_predef_symbols![PD_decons] # decons_index=decons_symbol.pds_def # cs={cs & cs_predef_symbols=cs_predef_symbols,cs_x.x_needed_modules=cs_x.x_needed_modules bitor cNeedStdStrictLists} = (stdStrictLists_index,cons_index,decons_index,nil_index,predefined_idents.[PD_decons],cs) make_overloaded_list type_symbol expr_heap cs # (stdStrictLists_index,cons_index,decons_index,nil_index,decons_ident,cs) = get_overloaded_list_indices_and_decons_ident cs # overloaded_list=OverloadedList type_symbol stdStrictLists_index decons_index nil_index # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_index,glob_module=stdStrictLists_index}} # decons_expr = App {app_symb=app_symb,app_args=[],app_info_ptr=new_info_ptr} = (overloaded_list,decons_expr,expr_heap,cs) make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs | cons_symbol.glob_module==cPredefinedModuleIndex # pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex | pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol # (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs = (OverloadedListPatterns unboxed_list decons_expr alg_patterns,expr_heap,cs) | pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol # (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs = (OverloadedListPatterns unboxed_tail_strict_list decons_expr alg_patterns,expr_heap,cs) | pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol # (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs = (OverloadedListPatterns overloaded_list decons_expr alg_patterns,expr_heap,cs) = (AlgebraicPatterns global_type_index alg_patterns,expr_heap,cs) = (AlgebraicPatterns global_type_index alg_patterns,expr_heap,cs) checkFunctionBodies :: !FunctionBody !Ident !.ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> (!FunctionBody, ![FreeVar], !*ExpressionState,!*ExpressionInfo,!*CheckState) checkFunctionBodies (ParsedBody [{pb_args,pb_rhs={rhs_alts,rhs_locals}, pb_position} : bodies]) function_ident_for_errors e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap, es_fun_defs} e_info cs # (aux_patterns, (var_env, array_patterns), {ps_var_heap,ps_fun_defs}, e_info, cs) = check_patterns pb_args {pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False} ([], []) {ps_var_heap = es_var_heap, ps_fun_defs = es_fun_defs} e_info cs (rhs_expr, free_vars, e_state, e_info, cs) = checkRhs [] rhs_alts rhs_locals e_input { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs } e_info cs (expr_with_array_selections, free_vars, e_state=:{es_var_heap,es_dynamics=dynamics_in_rhs}, e_info, cs) = addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table cs = { cs & cs_symbol_table = cs_symbol_table } (cb_args, es_var_heap) = mapSt determine_function_arg aux_patterns es_var_heap (rhss, free_vars, e_state=:{es_dynamics,es_expr_heap,es_var_heap}, e_info, cs) = check_function_bodies free_vars cb_args bodies e_input { e_state & es_dynamics = [], es_var_heap = es_var_heap } e_info cs (rhs, position, es_var_heap, es_expr_heap, dynamics_in_patterns, cs) = transform_patterns_into_cases aux_patterns cb_args expr_with_array_selections pb_position es_var_heap es_expr_heap dynamics_in_rhs cs = (CheckedBody { cb_args = cb_args, cb_rhs = [{ ca_rhs = rhs, ca_position = position } : rhss] }, free_vars, { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs) where check_patterns [pattern : patterns] p_input accus var_store e_info cs # (aux_pat, accus, var_store, e_info, cs) = checkPattern pattern No p_input accus var_store e_info cs (aux_pats, accus, var_store, e_info, cs) = check_patterns patterns p_input accus var_store e_info cs = ([aux_pat : aux_pats], accus, var_store, e_info, cs) check_patterns [] p_input accus var_store e_info cs = ([], accus, var_store, e_info, cs) determine_function_arg (AP_Variable name var_info (Yes {bind_src, bind_dst})) var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Variable name var_info No) var_store = ({ fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Algebraic _ _ _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Basic _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_NewType _ _ _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg (AP_Dynamic _ _ opt_var) var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) determine_function_arg _ var_store # ({bind_src,bind_dst}, var_store) = determinePatternVariable No var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, var_store) check_function_bodies free_vars fun_args [{pb_args,pb_rhs={rhs_alts,rhs_locals},pb_position} : bodies] e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap,es_fun_defs} e_info cs # cs = pushErrorAdmin (newPosition function_ident_for_errors pb_position) cs # (aux_patterns, (var_env, array_patterns), {ps_var_heap,ps_fun_defs}, e_info, cs) = check_patterns pb_args { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], []) {ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs} e_info cs # cs = popErrorAdmin cs e_state = { e_state & es_var_heap = ps_var_heap,es_fun_defs = ps_fun_defs} (rhs_expr, free_vars, e_state, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs (rhs_expr, free_vars, e_state=:{es_dynamics=dynamics_in_rhs}, e_info, cs) = addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table (rhs_exprs, free_vars, e_state=:{es_dynamics,es_expr_heap,es_var_heap}, e_info, cs) = check_function_bodies free_vars fun_args bodies e_input { e_state & es_dynamics = [] } e_info { cs & cs_symbol_table = cs_symbol_table } (rhs_expr, position, es_var_heap, es_expr_heap, dynamics_in_patterns, cs) = transform_patterns_into_cases aux_patterns fun_args rhs_expr pb_position es_var_heap es_expr_heap dynamics_in_rhs cs = ([{ ca_rhs = rhs_expr, ca_position = position } : rhs_exprs], free_vars, { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap, es_dynamics = dynamics_in_patterns ++ es_dynamics }, e_info, cs) check_function_bodies free_vars fun_args [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) transform_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr pattern_position var_store expr_heap opt_dynamics cs # (patterns_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = transform_succeeding_patterns_into_cases patterns fun_args result_expr pattern_position var_store expr_heap opt_dynamics cs = transform_pattern_into_cases pattern fun_arg patterns_expr pattern_position var_store expr_heap opt_dynamics cs where transform_succeeding_patterns_into_cases [] _ result_expr pattern_position var_store expr_heap opt_dynamics cs = (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) transform_succeeding_patterns_into_cases [pattern : patterns] [fun_arg : fun_args] result_expr pattern_position var_store expr_heap opt_dynamics cs # (patterns_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = transform_succeeding_patterns_into_cases patterns fun_args result_expr pattern_position var_store expr_heap opt_dynamics cs = transform_pattern_into_cases pattern fun_arg patterns_expr pattern_position var_store expr_heap opt_dynamics cs transform_patterns_into_cases [] _ result_expr pattern_position var_store expr_heap opt_dynamics cs = (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases :: !AuxiliaryPattern !FreeVar !Expression !Position !*VarHeap !*ExpressionHeap ![DynamicPtr] !*CheckState -> (!Expression, !Position, !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState) transform_pattern_into_cases (AP_Variable name var_info opt_var) fun_arg=:{fv_info_ptr,fv_ident} result_expr pattern_position var_store expr_heap opt_dynamics cs = case opt_var of Yes {bind_src, bind_dst} | bind_dst == fv_info_ptr # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict_binds = [], let_lazy_binds= [ { lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }], let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, pattern_position, var_store, expr_heap, opt_dynamics, cs) # (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap (var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict_binds = [], let_lazy_binds= [ { lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 }, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }, { lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 }, lb_dst = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }], let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, pattern_position, var_store, expr_heap, opt_dynamics, cs) No | var_info == fv_info_ptr -> (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Let { let_strict_binds = [], let_lazy_binds= [{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }], let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, pattern_position, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Algebraic cons_symbol global_type_index args opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr pattern_position var_store expr_heap opt_dynamics cs (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap # alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pattern_position }] # (case_guards,expr_heap,cs) = make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs = (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, NoPos, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Basic basic_val opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs # (basic_type, cs) = typeOfBasicValue basic_val cs (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr, bp_position = pattern_position }] (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, NoPos, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_NewType cons_symbol type_index arg opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern arg result_expr pattern_position var_store expr_heap opt_dynamics cs type_symbol = {gi_module = cons_symbol.glob_module, gi_index = type_index} (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap # alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pattern_position }] # case_guards = NewTypePatterns type_symbol alg_patterns = (Case { case_expr = act_var, case_guards = case_guards, case_default = No, case_ident = No, case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, NoPos, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases (AP_Dynamic pattern type opt_var) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap (act_var, result_expr, expr_heap) = transform_pattern_variable fun_arg opt_var result_expr expr_heap type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_code = TCE_Empty, dp_position = pattern_position }] = (buildTypeCase act_var type_case_patterns No type_case_info_ptr cCaseNotExplicit, NoPos, var_store, expr_heap, [dynamic_info_ptr], cs) transform_pattern_into_cases (AP_WildCard _) fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs = (result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) transform_pattern_into_cases AP_Empty fun_arg result_expr pattern_position var_store expr_heap opt_dynamics cs = (EE, pattern_position, var_store, expr_heap, opt_dynamics, cs) transform_pattern_variable :: !FreeVar !(Optional (Bind Ident VarInfoPtr)) !Expression !*ExpressionHeap -> (!Expression, !Expression, !*ExpressionHeap) transform_pattern_variable {fv_info_ptr,fv_ident} (Yes {bind_src,bind_dst}) result_expr expr_heap | bind_dst == fv_info_ptr # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap) # (var_expr_ptr1, expr_heap) = newPtr EI_Empty expr_heap (var_expr_ptr2, expr_heap) = newPtr EI_Empty expr_heap (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr1 }, Let { let_strict_binds = [], let_lazy_binds = [{ lb_src = Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr2 }, lb_dst = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }], let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, expr_heap) transform_pattern_variable {fv_info_ptr,fv_ident} No result_expr expr_heap # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, result_expr, expr_heap) checkFunctionBodies GeneratedBody function_ident_for_errors e_input e_state e_info cs = (GeneratedBody, [], e_state, e_info, cs) //---> ("checkFunctionBodies: function to derive ", function_ident_for_errors) checkFunctionBodies _ function_ident_for_errors e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_var_heap, es_fun_defs} e_info cs = abort ("checkFunctionBodies " +++ toString function_ident_for_errors +++ "\n") removeLocalsFromSymbolTable :: !Index !Level ![Ident] !LocalDefs !Int !*{#FunDef} !*{#*{#FunDef}} !*(Heap SymbolTableEntry) -> (!.{#FunDef},!.{#.{#FunDef}},!.Heap SymbolTableEntry) removeLocalsFromSymbolTable module_index level loc_vars (CollectedLocalDefs {loc_functions,loc_in_icl_module}) local_functions_index_offset fun_defs macro_defs symbol_table # loc_functions={ir_from=loc_functions.ir_from+local_functions_index_offset,ir_to=loc_functions.ir_to+local_functions_index_offset} # symbol_table=removeLocalIdentsFromSymbolTable level loc_vars symbol_table | loc_in_icl_module # (fun_defs,symbol_table) = removeLocalFunctionsFromSymbolTable level loc_functions fun_defs symbol_table = (fun_defs,macro_defs,symbol_table) # (macro_defs,symbol_table) = removeLocalDclMacrosFromSymbolTable level module_index loc_functions macro_defs symbol_table = (fun_defs,macro_defs,symbol_table) :: LetBinds :== [([LetBind],[LetBind])] checkRhs :: [FreeVar] OptGuardedAlts LocalDefs ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); checkRhs free_vars rhs_alts rhs_locals e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs # ei_expr_level = inc ei_expr_level (loc_defs, (var_env, array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index rhs_locals ei_local_functions_index_offset e_state e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index ei_expr_level rhs_locals ei_local_functions_index_offset e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps, hp_generic_heap = e_state.es_generic_heap } cs (rhs_expr, _, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars rhs_alts { e_input & ei_expr_level = ei_expr_level } { e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expr_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps,es_generic_heap=heaps.hp_generic_heap } e_info cs (expr, free_vars, e_state, e_info, cs) = addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs (es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level var_env rhs_locals ei_local_functions_index_offset e_state.es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table = (expr, free_vars, { e_state & es_fun_defs = es_fun_defs}, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table }) where check_opt_guarded_alts free_vars (GuardedAlts guarded_alts default_expr) e_input e_state e_info cs # (let_vars_list, rev_guarded_exprs, last_expr_level, free_vars, e_state, e_info, cs) = check_guarded_expressions free_vars guarded_alts [] [] e_input e_state e_info cs (default_expr, default_expr_position, free_vars, e_state, e_info, cs) = check_default_expr free_vars default_expr { e_input & ei_expr_level = last_expr_level } e_state e_info cs cs = { cs & cs_symbol_table = remove_seq_let_vars e_input.ei_expr_level let_vars_list cs.cs_symbol_table } (result_expr, result_expr_position , es_expr_heap) = convert_guards_to_cases rev_guarded_exprs default_expr default_expr_position e_state.es_expr_heap = (result_expr, result_expr_position, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs) check_opt_guarded_alts free_vars (UnGuardedExpr unguarded_expr) e_input e_state e_info cs = check_unguarded_expression free_vars unguarded_expr e_input e_state e_info cs check_default_expr free_vars (Yes default_expr) e_input e_state e_info cs # (expr, expr_position, free_vars, e_state, e_info, cs) = check_unguarded_expression free_vars default_expr e_input e_state e_info cs = (Yes expr, expr_position, free_vars, e_state, e_info, cs) check_default_expr free_vars No e_input e_state e_info cs = (No, NoPos, free_vars, e_state, e_info, cs) convert_guards_to_cases [guard_expr] result_expr result_expr_position es_expr_heap = convert_guard_to_case guard_expr result_expr result_expr_position es_expr_heap convert_guards_to_cases [guard_expr : rev_guarded_exprs] result_expr result_expr_position es_expr_heap # (result_expr, result_expr_position, es_expr_heap) = convert_guard_to_case guard_expr result_expr result_expr_position es_expr_heap = convert_guards_to_cases rev_guarded_exprs (Yes result_expr) result_expr_position es_expr_heap convert_guard_to_case (let_binds, guard, expr, expr_position, guard_ident) result_expr result_expr_position es_expr_heap # (case_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap basic_pattern = {bp_value = (BVB True), bp_expr = expr, bp_position = expr_position } case_expr = Case {case_expr = guard, case_guards = BasicPatterns BT_Bool [basic_pattern], case_default = result_expr, case_default_pos = result_expr_position, case_ident = Yes guard_ident, case_explicit = cCaseNotExplicit, case_info_ptr = case_expr_ptr } = build_sequential_lets let_binds case_expr NoPos es_expr_heap check_guarded_expressions :: [FreeVar] [GuardedExpr] [[Ident]] [(LetBinds,Expression,Expression,Position,Ident)] ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *([[Ident]],[(LetBinds,Expression,Expression,Position,Ident)],Int,[FreeVar], *ExpressionState,*ExpressionInfo,*CheckState) check_guarded_expressions free_vars [gexpr : gexprs] let_vars_list rev_guarded_exprs e_input e_state e_info cs # (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs) = check_guarded_expression free_vars gexpr let_vars_list rev_guarded_exprs e_input e_state e_info cs = check_guarded_expressions free_vars gexprs let_vars_list rev_guarded_exprs { e_input & ei_expr_level = ei_expr_level } e_state e_info cs check_guarded_expressions free_vars [] let_vars_list rev_guarded_exprs {ei_expr_level} e_state e_info cs = (let_vars_list, rev_guarded_exprs, ei_expr_level, free_vars, e_state, e_info, cs) check_guarded_expression free_vars {alt_nodes,alt_guard,alt_expr,alt_ident,alt_position} let_vars_list rev_guarded_exprs e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (let_binds, let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars alt_nodes let_vars_list { e_input & ei_expr_level = inc ei_expr_level } e_state e_info cs e_input = { e_input & ei_expr_level = ei_expr_level } cs = pushErrorAdmin2 "guard" alt_position cs (guard, free_vars, e_state, e_info, cs) = checkExpression free_vars alt_guard e_input e_state e_info cs cs = popErrorAdmin cs (expr, expr_position, free_vars, e_state, e_info, cs) = check_opt_guarded_alts free_vars alt_expr e_input e_state e_info cs = (let_vars_list, [(let_binds, guard, expr, expr_position, alt_ident) : rev_guarded_exprs], ei_expr_level, free_vars, e_state, e_info, cs ) check_unguarded_expression :: [FreeVar] ExprWithLocalDefs ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,!Position,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); check_unguarded_expression free_vars {ewl_nodes,ewl_expr,ewl_locals,ewl_position} e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs # this_expr_level = inc ei_expr_level (loc_defs, (var_env, array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs this_expr_level ei_mod_index ewl_locals ei_local_functions_index_offset e_state e_info cs (binds, let_vars_list, rhs_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars ewl_nodes [] { e_input & ei_expr_level = this_expr_level } e_state e_info cs cs = pushErrorAdmin2 "" ewl_position cs (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars ewl_expr { e_input & ei_expr_level = rhs_expr_level } e_state e_info cs cs = popErrorAdmin cs (expr, free_vars, e_state, e_info, cs) = addArraySelections array_patterns expr free_vars e_input e_state e_info cs cs = { cs & cs_symbol_table = remove_seq_let_vars rhs_expr_level let_vars_list cs.cs_symbol_table } (seq_let_expr, expr_position, es_expr_heap) = build_sequential_lets binds expr ewl_position e_state.es_expr_heap (expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs seq_let_expr e_input { e_state & es_expr_heap = es_expr_heap} e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index rhs_expr_level ewl_locals ei_local_functions_index_offset e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps,hp_generic_heap=e_state.es_generic_heap } cs (es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index this_expr_level var_env ewl_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table = (expr, expr_position, free_vars, {e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expr_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps, es_generic_heap=heaps.hp_generic_heap}, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table} ) remove_seq_let_vars level [] symbol_table = symbol_table remove_seq_let_vars level [let_vars : let_vars_list] symbol_table = remove_seq_let_vars (dec level) let_vars_list (removeLocalIdentsFromSymbolTable level let_vars symbol_table) check_sequential_lets :: [FreeVar] [NodeDefWithLocals] u:[[Ident]] !ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!LetBinds,!u:[[Ident]],!Int,![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); check_sequential_lets free_vars [seq_let:seq_lets] let_vars_list e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # ei_expr_level = inc ei_expr_level e_input = { e_input & ei_expr_level = ei_expr_level } (src_expr, pattern_expr, (let_vars, array_patterns), free_vars, e_state, e_info, cs) = check_sequential_let free_vars seq_let e_input e_state e_info cs (binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs) = check_sequential_lets free_vars seq_lets [let_vars : let_vars_list] e_input e_state e_info cs | seq_let.ndwl_strict # (lazy_let_binds,strict_let_bind,es_var_heap, es_expr_heap, e_info, cs) = transfromPatternIntoStrictBind ei_mod_index ei_expr_level pattern_expr src_expr seq_let.ndwl_position e_state.es_var_heap e_state.es_expr_heap e_info cs e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap } (strict_array_pattern_binds, lazy_array_pattern_binds, free_vars, e_state, e_info, cs) = buildArraySelections e_input array_patterns free_vars e_state e_info cs all_binds = [ (strict_let_bind,lazy_let_binds), (strict_array_pattern_binds, lazy_array_pattern_binds) : binds] = (all_binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs) # (let_binds, es_var_heap, es_expr_heap, e_info, cs) = transfromPatternIntoBind ei_mod_index ei_expr_level pattern_expr src_expr seq_let.ndwl_position e_state.es_var_heap e_state.es_expr_heap e_info cs e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap } (strict_array_pattern_binds, lazy_array_pattern_binds, free_vars, e_state, e_info, cs) = buildArraySelections e_input array_patterns free_vars e_state e_info cs all_binds = [([],let_binds), (strict_array_pattern_binds, lazy_array_pattern_binds) : binds] = (all_binds, loc_envs, max_expr_level, free_vars, e_state, e_info, cs) check_sequential_lets free_vars [] let_vars_list e_input=:{ei_expr_level} e_state e_info cs = ([], let_vars_list, ei_expr_level, free_vars, e_state, e_info, cs) check_sequential_let :: [FreeVar] NodeDefWithLocals ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!Expression,!AuxiliaryPattern,!(![Ident],![ArrayPattern]),![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); check_sequential_let free_vars {ndwl_def={bind_src,bind_dst},ndwl_locals, ndwl_position} e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs # cs = pushErrorAdmin (newPosition {id_name="node definition", id_info=nilPtr} ndwl_position) cs (loc_defs, (loc_env, loc_array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index ndwl_locals ei_local_functions_index_offset e_state e_info cs (src_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs (src_expr, free_vars, e_state, e_info, cs) = addArraySelections loc_array_patterns src_expr free_vars e_input e_state e_info cs (src_expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs src_expr e_input e_state e_info cs (es_fun_defs, e_info, {hp_var_heap,hp_expression_heap,hp_type_heaps,hp_generic_heap}, cs) = checkLocalFunctions ei_mod_index ei_expr_level ndwl_locals ei_local_functions_index_offset e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps,hp_generic_heap=e_state.es_generic_heap} cs (es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level loc_env ndwl_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table (pattern, accus, {ps_fun_defs,ps_var_heap}, e_info, cs) = checkPattern bind_dst No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = True } ([], []) {ps_var_heap = hp_var_heap,ps_fun_defs = es_fun_defs } {e_info & ef_macro_defs=macro_defs} { cs & cs_symbol_table = cs_symbol_table } e_state = { e_state & es_var_heap = ps_var_heap, es_expr_heap = hp_expression_heap, es_type_heaps = hp_type_heaps,es_generic_heap=hp_generic_heap,es_fun_defs = ps_fun_defs } = (src_expr, pattern, accus, free_vars, e_state, e_info, popErrorAdmin cs) build_sequential_lets :: !LetBinds !Expression !Position !*ExpressionHeap -> (!Expression, !Position, !*ExpressionHeap) build_sequential_lets [] expr let_expr_position expr_heap = (expr, let_expr_position, expr_heap) build_sequential_lets [(strict_binds, lazy_binds) : seq_lets] expr let_expr_position expr_heap # (let_expr, let_expr_position, expr_heap) = build_sequential_lets seq_lets expr let_expr_position expr_heap (let_expr, expr_heap) = buildLetExpression strict_binds lazy_binds let_expr let_expr_position expr_heap = ( let_expr, if (isEmpty strict_binds && isEmpty lazy_binds) let_expr_position NoPos, expr_heap) checkLocalFunctions :: !Index !Level !LocalDefs !Int !*{#FunDef} !*ExpressionInfo !*Heaps !*CheckState -> (!.{#FunDef},!.ExpressionInfo,!.Heaps,!.CheckState); checkLocalFunctions mod_index level (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_in_icl_module}) local_functions_index_offset fun_defs e_info heaps cs # ir_from=ir_from+local_functions_index_offset # ir_to=ir_to+local_functions_index_offset | loc_in_icl_module = checkFunctions mod_index level ir_from ir_to local_functions_index_offset fun_defs e_info heaps cs # (e_info,heaps,cs) = checkDclMacros mod_index level ir_from ir_to e_info heaps cs = (fun_defs,e_info,heaps,cs) checkExpression :: ![FreeVar] !ParsedExpr !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> *(!Expression, ![FreeVar], !*ExpressionState,!*ExpressionInfo,!*CheckState); checkExpression free_vars (PE_List exprs) e_input e_state e_info cs # (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs (expr, e_state, cs_error) = build_expression exprs e_state cs.cs_error = (expr, free_vars, e_state, e_info, { cs & cs_error = cs_error }) where check_expressions free_vars [expr : exprs] e_input e_state e_info cs # (exprs, free_vars, e_state, e_info, cs) = check_expressions free_vars exprs e_input e_state e_info cs = case expr of PE_Ident id # (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsInExpressionList free_vars id e_input e_state e_info cs -> ([expr : exprs], free_vars, e_state, e_info, cs) PE_QualifiedIdent module_id ident_name # (expr, free_vars, e_state, e_info, cs) = checkQualifiedIdentExpression free_vars module_id ident_name cIsInExpressionList e_input e_state e_info cs -> ([expr : exprs], free_vars, e_state, e_info, cs) _ # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs -> ([expr : exprs], free_vars, e_state, e_info, cs) check_expressions free_vars [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) first_argument_of_infix_operator_missing = "first argument of infix operator missing" build_expression [Constant symb _ (Prio _ _) , _: _] e_state cs_error = (EE, e_state, checkError symb.symb_ident first_argument_of_infix_operator_missing cs_error) build_expression [Constant symb arity _] e_state cs_error = buildApplicationWithoutArguments symb e_state cs_error build_expression [expr] e_state cs_error = (expr, e_state, cs_error) build_expression [expr : exprs] e_state cs_error # (opt_opr, left, e_state, cs_error) = split_at_operator [expr] exprs e_state cs_error (left_expr, e_state, cs_error) = combine_expressions left [] 0 e_state cs_error = case opt_opr of Yes (symb, arity, prio, right) -> case right of [Constant symb _ (Prio _ _):_] -> (EE, e_state, checkError symb.symb_ident first_argument_of_infix_operator_missing cs_error) _ -> build_operator_expression [] left_expr (symb, arity, prio) right e_state cs_error No -> (left_expr, e_state, cs_error) where split_at_operator left [Constant symb arity NoPrio : exprs] e_state cs_error # (appl_exp, e_state, cs_error) = buildApplicationWithoutArguments symb e_state cs_error = split_at_operator [appl_exp : left] exprs e_state cs_error split_at_operator left [Constant symb arity (Prio _ _)] e_state cs_error = (No, left, e_state, checkError symb.symb_ident "second argument of infix operator missing" cs_error) split_at_operator left [Constant symb arity prio] e_state cs_error # (appl_exp, e_state, cs_error) = buildApplicationWithoutArguments symb e_state cs_error = (No, [appl_exp : left], e_state, cs_error) split_at_operator left [expr=:(Constant symb arity prio) : exprs] e_state cs_error = (Yes (symb, arity, prio, exprs), left, e_state, cs_error) split_at_operator left [expr : exprs] e_state cs_error = split_at_operator [expr : left] exprs e_state cs_error split_at_operator exp [] e_state cs_error = (No, exp, e_state, cs_error) combine_expressions [first_expr] args arity e_state cs_error = case first_expr of Constant symb form_arity _ -> buildApplication symb form_arity arity args e_state cs_error _ | arity == 0 -> (first_expr, e_state, cs_error) -> (first_expr @ args, e_state, cs_error) combine_expressions [rev_arg : rev_args] args arity e_state cs_error = combine_expressions rev_args [rev_arg : args] (inc arity) e_state cs_error build_operator_expression left_appls left1 (symb1, arity1, prio1) [re : res] e_state cs_error # (opt_opr, left2, e_state, cs_error) = split_at_operator [re] res e_state cs_error = case opt_opr of Yes (symb2, arity2, prio2, right) # optional_prio = determinePriority prio1 prio2 -> case optional_prio of Yes priority | priority # (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error (new_left, e_state, cs_error) = buildApplication symb1 arity1 2 [left1,middle_exp] e_state cs_error (left_appls, new_left, e_state, cs_error) = build_left_operand left_appls prio2 new_left e_state cs_error -> build_operator_expression left_appls new_left (symb2, arity2, prio2) right e_state cs_error # (middle_exp, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error -> build_operator_expression [(symb1, arity1, prio1, left1) : left_appls] middle_exp (symb2, arity2, prio2) right e_state cs_error No -> (EE, e_state, checkError symb1.symb_ident "conflicting priorities" cs_error) No # (right, e_state, cs_error) = combine_expressions left2 [] 0 e_state cs_error (result_expr, e_state, cs_error) = buildApplication symb1 arity1 2 [left1,right] e_state cs_error -> build_final_expression left_appls result_expr e_state cs_error build_left_operand [] _ result_expr e_state cs_error = ([], result_expr, e_state, cs_error) build_left_operand la=:[(symb, arity, priol, left) : left_appls] prior result_expr e_state cs_error # optional_prio = determinePriority priol prior = case optional_prio of Yes priority | priority # (result_expr, e_state, cs_error) = buildApplication symb arity 2 [left,result_expr] e_state cs_error -> build_left_operand left_appls prior result_expr e_state cs_error -> (la, result_expr, e_state, cs_error) No -> (la, EE, e_state, checkError symb.symb_ident "conflicting priorities" cs_error) build_final_expression [] result_expr e_state cs_error = (result_expr, e_state, cs_error) build_final_expression [(symb, arity, _, left) : left_appls] result_expr e_state cs_error # (result_expr, e_state, cs_error) = buildApplication symb arity 2 [left,result_expr] e_state cs_error = build_final_expression left_appls result_expr e_state cs_error checkExpression free_vars (PE_Let let_locals expr) e_input=:{ei_expr_level,ei_mod_index,ei_local_functions_index_offset} e_state e_info cs # ei_expr_level = inc ei_expr_level (loc_defs, (var_env, array_patterns), e_state, e_info, cs) = checkLhssOfLocalDefs ei_expr_level ei_mod_index let_locals ei_local_functions_index_offset e_state e_info cs e_input = { e_input & ei_expr_level = ei_expr_level } (let_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = addArraySelections array_patterns let_expr free_vars e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = checkRhssAndTransformLocalDefs free_vars loc_defs expr e_input e_state e_info cs (es_fun_defs, e_info, heaps, cs) = checkLocalFunctions ei_mod_index ei_expr_level let_locals ei_local_functions_index_offset e_state.es_fun_defs e_info { hp_var_heap = e_state.es_var_heap, hp_expression_heap = e_state.es_expr_heap, hp_type_heaps = e_state.es_type_heaps, hp_generic_heap = e_state.es_generic_heap } cs (es_fun_defs,macro_defs,cs_symbol_table) = removeLocalsFromSymbolTable ei_mod_index ei_expr_level var_env let_locals ei_local_functions_index_offset es_fun_defs e_info.ef_macro_defs cs.cs_symbol_table = (expr, free_vars, { e_state & es_fun_defs = es_fun_defs, es_var_heap = heaps.hp_var_heap, es_expr_heap = heaps.hp_expression_heap, es_type_heaps = heaps.hp_type_heaps,es_generic_heap = heaps.hp_generic_heap }, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table }) checkExpression free_vars (PE_Case case_ident expr alts) e_input e_state e_info cs # (pattern_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (guards, _, pattern_variables, defaul, free_vars, e_state, e_info, cs) = check_case_alts free_vars alts [] case_ident.id_name e_input e_state e_info cs (pattern_expr, binds, es_expr_heap) = bind_pattern_variables pattern_variables pattern_expr e_state.es_expr_heap (case_expr, es_var_heap, es_expr_heap) = build_and_share_case guards defaul pattern_expr case_ident cCaseExplicit e_state.es_var_heap es_expr_heap (result_expr, es_expr_heap) = buildLetExpression [] binds case_expr NoPos es_expr_heap = (result_expr, free_vars, { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap }, e_info, cs) where check_case_alts free_vars [g] pattern_variables case_name e_input=:{ei_expr_level} e_state e_info cs # e_input = { e_input & ei_expr_level = inc ei_expr_level } = check_case_alt free_vars g NoPattern NoPattern pattern_variables No case_name e_input e_state e_info cs check_case_alts free_vars [g : gs] pattern_variables case_name e_input=:{ei_expr_level} e_state e_info cs # e_input = { e_input & ei_expr_level = inc ei_expr_level } (gs, pattern_scheme, pattern_variables, defaul, free_vars, e_state, e_info, cs) = check_case_alts free_vars gs pattern_variables case_name e_input e_state e_info cs = check_case_alt free_vars g gs pattern_scheme pattern_variables defaul case_name e_input e_state e_info cs check_case_alt :: [FreeVar] CaseAlt CasePatterns CasePatterns [(Bind Ident (Ptr VarInfo))] (Optional ((Optional FreeVar),Expression)) {#Char} ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(CasePatterns,CasePatterns,[(Bind Ident (Ptr VarInfo))],(Optional ((Optional FreeVar),Expression)),[FreeVar],*ExpressionState,*ExpressionInfo,*CheckState) check_case_alt free_vars {calt_pattern,calt_rhs={rhs_alts,rhs_locals},calt_position} patterns pattern_scheme pattern_variables defaul case_name e_input=:{ei_expr_level,ei_mod_index} e_state=:{es_fun_defs,es_var_heap,es_dynamics=outer_dynamics} e_info cs # (pattern, (var_env, array_patterns), {ps_fun_defs,ps_var_heap}, e_info, cs) = checkPattern calt_pattern No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], []) {ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs} e_info cs e_state = { e_state & es_var_heap = ps_var_heap, es_fun_defs = ps_fun_defs, es_dynamics = [] } (rhs_expr, free_vars, e_state, e_info, cs) = checkRhs free_vars rhs_alts rhs_locals e_input e_state e_info cs (expr_with_array_selections, free_vars, e_state=:{es_dynamics = dynamics_in_rhs, es_expr_heap, es_var_heap}, e_info, cs) = addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs cs_symbol_table = removeLocalIdentsFromSymbolTable ei_expr_level var_env cs.cs_symbol_table (guarded_expr, pattern_scheme, pattern_variables, defaul, es_var_heap, es_expr_heap, dynamics_in_patterns, cs) = transform_pattern pattern patterns pattern_scheme pattern_variables defaul expr_with_array_selections case_name calt_position es_var_heap es_expr_heap dynamics_in_rhs { cs & cs_symbol_table = cs_symbol_table } e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap, es_dynamics = dynamics_in_patterns ++ outer_dynamics } = (guarded_expr, pattern_scheme, pattern_variables, defaul, free_vars, e_state, e_info, cs) bind_pattern_variables [] pattern_expr expr_heap = (pattern_expr, [], expr_heap) bind_pattern_variables [{bind_src,bind_dst} : variables] this_pattern_expr expr_heap # free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (bound_var, expr_heap) = allocate_bound_var free_var expr_heap (pattern_expr, binds, expr_heap) = bind_pattern_variables variables (Var bound_var) expr_heap = (pattern_expr, [{lb_src = this_pattern_expr, lb_dst = free_var, lb_position = NoPos } : binds], expr_heap) checkExpression free_vars (PE_Selection selector_kind expr [PS_Array index_expr]) e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs # (select_fun, selector_kind) = case selector_kind of ParsedNormalSelector -> (PD_ArraySelectFun, NormalSelector) ParsedUniqueSelector False -> (PD_UnqArraySelectFun, UniqueSingleArraySelector/*NormalSelector*/) ParsedUniqueSelector True -> (PD_UnqArraySelectFun, UniqueSingleArraySelectorUniqueElementResult) # (glob_select_symb, cs) = getPredefinedGlobalSymbol select_fun PD_StdArray STE_Member 2 cs (selector, free_vars, e_state, e_info, cs) = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs = (Selection selector_kind expr [selector], free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Selection selector_kind expr selectors) e_input e_state e_info cs # (selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithSelection free_vars selectors e_input e_state e_info cs (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs = case selector_kind of ParsedNormalSelector -> (Selection NormalSelector expr selectors, free_vars, e_state, e_info, cs) ParsedUniqueSelector unique_element -> (Selection UniqueSelector expr selectors, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Update expr1 selectors expr2) e_input e_state e_info cs # (expr1, free_vars, e_state, e_info, cs) = checkExpression free_vars expr1 e_input e_state e_info cs (selectors, free_vars, e_state, e_info, cs) = checkSelectors cEndWithUpdate free_vars selectors e_input e_state e_info cs (expr2, free_vars, e_state, e_info, cs) = checkExpression free_vars expr2 e_input e_state e_info cs = (Update expr1 selectors expr2, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Tuple exprs) e_input e_state e_info cs # (exprs, arity, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs ({glob_object={ds_ident,ds_index},glob_module}, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs = (App { app_symb = { symb_ident = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module }}, app_args = exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs) where check_expression_list free_vars [] e_input e_state e_info cs = ([], 0, free_vars, e_state, e_info, cs) check_expression_list free_vars [expr : exprs] e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs (exprs, length, free_vars, e_state, e_info, cs) = check_expression_list free_vars exprs e_input e_state e_info cs = ([expr : exprs], inc length, free_vars, e_state, e_info, cs) checkExpression free_vars rec=:(PE_Record record opt_type fields) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (opt_record_and_fields, e_info, cs) = checkFields ei_mod_index fields opt_type e_info cs = case opt_record_and_fields of Yes (cons=:{glob_module, glob_object}, _, new_fields) # {ds_ident,ds_index} = glob_object rec_cons = { symb_ident = ds_ident, symb_kind = SK_Constructor { glob_object = ds_index, glob_module = glob_module } } -> case record of PE_Empty # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Constructor e_input e_state e_info cs -> (App { app_symb = rec_cons, app_args = remove_fields exprs, app_info_ptr = nilPtr }, free_vars, e_state, e_info, cs) _ # (rec_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars record e_input e_state e_info cs # (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars new_fields 0 RK_Update e_input e_state e_info cs -> (RecordUpdate cons rec_expr exprs, free_vars, e_state, e_info, cs) No -> (EE, free_vars, e_state, e_info, cs) where remove_fields binds = [ bind_src \\ {bind_src} <- binds ] check_field_exprs :: [FreeVar] [Bind ParsedExpr (Global FieldSymbol)] Int RecordKind ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> *(![.Bind Expression (Global FieldSymbol)],![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); check_field_exprs free_vars [] field_nr record_kind e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) check_field_exprs free_vars [field_expr : field_exprs] field_nr record_kind e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = check_field_expr free_vars field_expr field_nr record_kind e_input e_state e_info cs (exprs, free_vars, e_state, e_info, cs) = check_field_exprs free_vars field_exprs (inc field_nr) record_kind e_input e_state e_info cs = ([expr : exprs], free_vars, e_state, e_info, cs) check_field_expr :: [FreeVar] (Bind ParsedExpr (Global FieldSymbol)) Int RecordKind ExpressionInput *ExpressionState *ExpressionInfo *CheckState -> *(!.Bind Expression (Global FieldSymbol),![FreeVar],!*ExpressionState,!*ExpressionInfo,!*CheckState); check_field_expr free_vars field=:{bind_src = PE_Empty, bind_dst={glob_object={fs_var,fs_ident,fs_index},glob_module}} field_nr record_kind e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars fs_var e_input e_state e_info cs = ({ field & bind_src = expr }, free_vars, e_state, e_info, cs) check_field_expr free_vars field=:{bind_src = PE_WildCard, bind_dst={glob_object=fs_ident}} field_nr RK_Constructor e_input e_state e_info cs = ({ field & bind_src = NoBind nilPtr }, free_vars, e_state, e_info, { cs & cs_error = checkError fs_ident "field not specified" cs.cs_error }) check_field_expr free_vars field=:{bind_src = PE_WildCard} field_nr RK_Update e_input e_state=:{es_expr_heap} e_info cs # (bind_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap = ({ field & bind_src = NoBind bind_expr_ptr }, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs) check_field_expr free_vars field=:{bind_src} field_nr upd_record e_input e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars bind_src e_input e_state e_info cs = ({ field & bind_src = expr }, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Dynamic expr opt_type) e_input e_state=:{es_dynamics=outer_dynamics} e_info cs # (dyn_expr, free_vars, e_state=:{es_dynamics, es_expr_heap}, e_info, cs) = checkExpression free_vars expr e_input {e_state & es_dynamics = []} e_info cs (dyn_info_ptr, es_expr_heap) = newPtr (EI_UnmarkedDynamic opt_type es_dynamics) es_expr_heap = (DynamicExpr { dyn_expr = dyn_expr, dyn_opt_type = opt_type, dyn_info_ptr = dyn_info_ptr, dyn_type_code = TCE_Empty}, free_vars, { e_state & es_expr_heap = es_expr_heap, es_dynamics = [dyn_info_ptr : outer_dynamics]}, e_info, { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdDynamic }) checkExpression free_vars (PE_Basic basic_value) e_input e_state e_info cs = (BasicExpr basic_value, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_ABC_Code code_sequence do_inline) e_input e_state e_info cs = (ABCCodeExpr code_sequence do_inline, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_Any_Code ins outs code_sequence) e_input e_state e_info cs # (ins, (free_vars, e_state, e_info, cs)) = check_in_parameters e_input ins (free_vars, e_state, e_info, cs) (new_outs, (e_state, cs)) = check_out_parameters e_input.ei_expr_level outs (e_state, cs) cs_symbol_table = remove_out_parameters_from_symbol_table e_input.ei_expr_level outs cs.cs_symbol_table = (AnyCodeExpr ins new_outs code_sequence, free_vars, e_state, e_info, { cs & cs_symbol_table = cs_symbol_table }) where check_in_parameters e_input params fv_es_ei_cs = mapSt (check_in_parameter e_input) params fv_es_ei_cs check_in_parameter e_input { bind_src, bind_dst } (free_vars, e_state, e_info, cs) # (id_expr, free_vars, e_state, e_info, cs) = checkIdentExpression cIsNotInExpressionList free_vars bind_dst e_input e_state e_info cs = case id_expr of Var var -> ({ bind_dst = var, bind_src = bind_src }, (free_vars, e_state, e_info, cs)) _ -> ({ bind_dst = { var_ident = bind_dst, var_info_ptr = nilPtr, var_expr_ptr = nilPtr }, bind_src = bind_src }, (free_vars, e_state, e_info, { cs & cs_error = checkError bind_src "bound variable expected" cs.cs_error })) check_out_parameters expr_level params es_cs = mapSt (check_out_parameter expr_level) params es_cs check_out_parameter expr_level bind=:{ bind_src, bind_dst } (e_state, cs) | isLowerCaseName bind_dst.id_name # (entry, cs_symbol_table) = readPtr bind_dst.id_info cs.cs_symbol_table # (new_info_ptr, es_var_heap) = newPtr VI_Empty e_state.es_var_heap cs = checkPatternVariable expr_level entry bind_dst new_info_ptr { cs & cs_symbol_table = cs_symbol_table } = ( { bind & bind_dst = { fv_def_level = expr_level, fv_ident = bind_dst, fv_info_ptr = new_info_ptr, fv_count = 0 }}, ( { e_state & es_var_heap = es_var_heap }, cs)) = ( { bind & bind_dst = { fv_def_level = expr_level, fv_ident = bind_dst, fv_info_ptr = nilPtr, fv_count = 0 }}, ( e_state, { cs & cs_error = checkError bind_src "variable expected" cs.cs_error })) remove_out_parameters_from_symbol_table expr_level idents symbol_table = foldSt (\{bind_dst} -> removeIdentFromSymbolTable expr_level bind_dst) idents symbol_table checkExpression free_vars (PE_Ident id) e_input e_state e_info cs = checkIdentExpression cIsNotInExpressionList free_vars id e_input e_state e_info cs checkExpression free_vars (PE_QualifiedIdent module_id ident_name) e_input e_state e_info cs = checkQualifiedIdentExpression free_vars module_id ident_name cIsNotInExpressionList e_input e_state e_info cs checkExpression free_vars (PE_Generic id=:{id_name,id_info} kind) e_input e_state e_info cs=:{cs_symbol_table} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table = check_generic_expr free_vars entry id kind e_input e_state e_info {cs & cs_symbol_table = cs_symbol_table} where check_generic_expr :: ![FreeVar] !SymbolTableEntry !Ident !TypeKind !ExpressionInput !*ExpressionState !*ExpressionInfo !*CheckState -> (!Expression, ![FreeVar], !*ExpressionState, !*ExpressionInfo, !*CheckState) check_generic_expr free_vars entry=:{ste_kind=STE_Generic,ste_index} id kind e_input=:{ei_mod_index} e_state e_info cs = check_it free_vars ei_mod_index ste_index id kind e_input e_state e_info cs check_generic_expr free_vars entry=:{ste_kind=STE_Imported STE_Generic mod_index, ste_index} id kind e_input e_state e_info cs = check_it free_vars mod_index ste_index id kind e_input e_state e_info cs check_generic_expr free_vars entry=:{ste_kind=STE_Empty} id kind e_input e_state e_info cs=:{cs_error} = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "undefined generic" cs_error }) check_generic_expr free_vars entry id kind e_input e_state e_info cs=:{cs_error} = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "not a generic" cs_error }) check_it free_vars mod_index gen_index id kind e_input e_state=:{es_expr_heap} e_info cs #! symb_kind = SK_Generic {glob_object = gen_index, glob_module = mod_index} kind #! symbol = { symb_ident = id, symb_kind = symb_kind } #! (new_info_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap #! app = { app_symb = symbol, app_args = [], app_info_ptr = new_info_ptr } #! e_state = { e_state & es_expr_heap = es_expr_heap } #! cs = { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdGeneric } = (App app, free_vars, e_state, e_info, cs) checkExpression free_vars (PE_TypeSignature array_kind expr) e_input e_state e_info cs # (expr,free_vars,e_state,e_info,cs) = checkExpression free_vars expr e_input e_state e_info cs predef_array_index = case array_kind of UnboxedArray -> PD_UnboxedArrayType StrictArray -> PD_StrictArrayType ({pds_module,pds_def},cs) = cs!cs_predef_symbols.[predef_array_index] #! strict_array_ident = predefined_idents.[predef_array_index] # type_prop = { tsp_sign = BottomSignClass, tsp_propagation = NoPropClass, tsp_coercible = True } strict_array_type_symb_ident = {type_ident=strict_array_ident,type_arity=1,type_index={glob_module=pds_module,glob_object=pds_def},type_prop=type_prop} expr = TypeSignature (make_fresh_strict_array_type strict_array_type_symb_ident) expr = (expr,free_vars,e_state,e_info,cs) where make_fresh_strict_array_type strict_array_type_symb_ident var_store attr_store # element_type_var=TempV var_store var_store=var_store+1 element_type_attr_var = TA_TempVar attr_store attr_store=attr_store+1 array_type_attr_var = TA_TempVar attr_store attr_store=attr_store+1 element_type = {at_attribute = element_type_attr_var, at_type = element_type_var} strict_array_type = {at_attribute = array_type_attr_var, at_type = TA strict_array_type_symb_ident [element_type]} = (strict_array_type,var_store,attr_store) /* # {th_vars,th_attrs}=e_state.es_type_heaps # (element_type_var_ptr,th_vars) = newPtr TVI_Empty th_vars # (element_type_attr_ptr,th_attrs) = newPtr AVI_Empty th_attrs # (array_type_attr_ptr,th_attrs) = newPtr AVI_Empty th_attrs # e_state = {e_state & es_type_heaps = {th_vars=th_vars,th_attrs=th_attrs}} # element_type_var = {tv_ident = {id_name = "element_type_var", id_info = nilPtr}, tv_info_ptr = element_type_var_ptr} # element_type_attr_var = {av_ident = {id_name = "element_type_attr", id_info = nilPtr},av_info_ptr = element_type_attr_ptr} # array_type_attr_var = {av_ident = {id_name = "array_type_attr", id_info = nilPtr},av_info_ptr = array_type_attr_ptr} # element_type = {at_attribute = TA_Var element_type_attr_var, at_type = TV element_type_var} # strict_array_type = {at_attribute = TA_Var array_type_attr_var, at_type = TA strict_array_type_symb_ident [element_type]} # expr = TypeSignature strict_array_type expr */ checkExpression free_vars (PE_Matches case_ident expr pattern position) e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # (expr, free_vars, e_state, e_info, cs) = checkExpression free_vars expr e_input e_state e_info cs {es_fun_defs,es_var_heap,es_expr_heap} = e_state ps = {ps_var_heap = es_var_heap,ps_fun_defs = es_fun_defs} (pattern, (_/*var_env*/, _/*array_patterns*/), {ps_fun_defs,ps_var_heap}, e_info, cs) = checkPattern pattern No { pi_def_level = ei_expr_level, pi_mod_index = ei_mod_index, pi_is_node_pattern = False } ([], []) ps e_info cs | is_single_constructor_pattern pattern = case pattern of AP_Algebraic cons_symbol global_type_index args _ # is_cons_expr = IsConstructor expr cons_symbol (length args) global_type_index case_ident position e_state & es_fun_defs=ps_fun_defs, es_var_heap = ps_var_heap, es_expr_heap = es_expr_heap -> (is_cons_expr, free_vars, e_state, e_info, cs) # fail_expr = Yes (No,BasicExpr (BVB False)) true_expr = BasicExpr (BVB True) (guarded_expr, pattern_scheme, _/*pattern_variables*/, defaul, es_var_heap, es_expr_heap, _/*dynamics_in_patterns*/, cs) = transform_pattern pattern NoPattern NoPattern [] fail_expr true_expr case_ident.id_name position ps_var_heap es_expr_heap [] cs (case_expr, es_var_heap, es_expr_heap) = build_and_share_case guarded_expr defaul expr case_ident cCaseExplicit es_var_heap es_expr_heap e_state & es_fun_defs=ps_fun_defs, es_var_heap = es_var_heap, es_expr_heap = es_expr_heap = (case_expr, free_vars, e_state, e_info, cs) where is_single_constructor_pattern (AP_Algebraic cons_symbol _ args No) | cons_symbol.glob_module==cPredefinedModuleIndex # pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex | pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol || pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol || pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol = False = all_wild_card_args args = all_wild_card_args args is_single_constructor_pattern _ = False all_wild_card_args [AP_WildCard No : args] = all_wild_card_args args all_wild_card_args [_:_] = False all_wild_card_args [] = True checkExpression free_vars expr e_input e_state e_info cs = abort "checkExpression (checkFunctionBodies.icl)" // <<- expr transform_pattern :: !AuxiliaryPattern !CasePatterns !CasePatterns !(Env Ident VarInfoPtr) !(Optional (!Optional FreeVar, !Expression)) !Expression !String !Position !*VarHeap !*ExpressionHeap !Dynamics !*CheckState -> (!CasePatterns, !CasePatterns, !Env Ident VarInfoPtr, !Optional (!Optional FreeVar,!Expression), !*VarHeap, !*ExpressionHeap, ![DynamicPtr], !*CheckState) transform_pattern (AP_Algebraic cons_symbol global_type_index args opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs # (var_args, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr pos var_store expr_heap opt_dynamics cs pattern_variables = cons_optional opt_var pattern_variables # pattern = { ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pos} | cons_symbol.glob_module==cPredefinedModuleIndex # pd_cons_index=cons_symbol.glob_object.ds_index+FirstConstructorPredefinedSymbolIndex | pd_cons_index==PD_UnboxedConsSymbol || pd_cons_index==PD_UnboxedNilSymbol # (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs = case pattern_scheme of OverloadedListPatterns (UnboxedList _ _ _ _) _ _ # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns -> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) OverloadedListPatterns (OverloadedList _ _ _ _) _ _ # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_UnboxedConsSymbol PD_UnboxedNilSymbol cs -> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], OverloadedListPatterns unboxed_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) NoPattern -> (OverloadedListPatterns unboxed_list decons_expr [pattern], OverloadedListPatterns unboxed_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) | pd_cons_index==PD_UnboxedTailStrictConsSymbol || pd_cons_index==PD_UnboxedTailStrictNilSymbol # (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs = case pattern_scheme of OverloadedListPatterns (UnboxedTailStrictList _ _ _ _) _ _ # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns -> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) OverloadedListPatterns (OverloadedList _ _ _ _) _ _ # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_UnboxedTailStrictConsSymbol PD_UnboxedTailStrictNilSymbol cs -> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], OverloadedListPatterns unboxed_tail_strict_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) NoPattern -> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern], OverloadedListPatterns unboxed_tail_strict_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) | pd_cons_index==PD_OverloadedConsSymbol || pd_cons_index==PD_OverloadedNilSymbol = case pattern_scheme of OverloadedListPatterns (OverloadedList _ _ _ _) _ _ # (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns -> (OverloadedListPatterns overloaded_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) OverloadedListPatterns (UnboxedList _ _ _ _) _ _ # (unboxed_list,decons_expr,expr_heap,cs) = make_unboxed_list global_type_index expr_heap cs # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_UnboxedConsSymbol PD_UnboxedNilSymbol cs -> (OverloadedListPatterns unboxed_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) OverloadedListPatterns (UnboxedTailStrictList _ _ _ _) _ _ # (unboxed_tail_strict_list,decons_expr,expr_heap,cs) = make_unboxed_tail_strict_list global_type_index expr_heap cs # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_UnboxedTailStrictConsSymbol PD_UnboxedTailStrictNilSymbol cs -> (OverloadedListPatterns unboxed_tail_strict_list decons_expr [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) AlgebraicPatterns alg_type _ | alg_type.gi_module==cPredefinedModuleIndex # index=alg_type.gi_index+FirstTypePredefinedSymbolIndex | index==PD_ListType # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_ConsSymbol PD_NilSymbol cs -> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_StrictListType # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_StrictConsSymbol PD_StrictNilSymbol cs -> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_TailStrictListType # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_TailStrictConsSymbol PD_TailStrictNilSymbol cs -> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_StrictTailStrictListType # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern PD_StrictTailStrictConsSymbol PD_StrictTailStrictNilSymbol cs -> (AlgebraicPatterns alg_type [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) NoPattern # (overloaded_list,decons_expr,expr_heap,cs) = make_overloaded_list global_type_index expr_heap cs -> (OverloadedListPatterns overloaded_list decons_expr [pattern], OverloadedListPatterns overloaded_list decons_expr [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) = case pattern_scheme of AlgebraicPatterns alg_type _ | global_type_index == alg_type # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns -> (AlgebraicPatterns global_type_index [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error }) OverloadedListPatterns (OverloadedList _ _ _ _) _ _ | global_type_index.gi_module==cPredefinedModuleIndex # index=global_type_index.gi_index+FirstTypePredefinedSymbolIndex | index==PD_ListType # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_ConsSymbol PD_NilSymbol cs -> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_StrictListType # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_StrictConsSymbol PD_StrictNilSymbol cs -> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_TailStrictListType # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_TailStrictConsSymbol PD_TailStrictNilSymbol cs -> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) | index==PD_StrictTailStrictListType # alg_patterns = alg_patterns_of_OverloadedListPatterns_or_NoPattern patterns # (alg_patterns,cs) = replace_overloaded_symbols_in_patterns alg_patterns PD_StrictTailStrictConsSymbol PD_StrictTailStrictNilSymbol cs -> (AlgebraicPatterns global_type_index [pattern:alg_patterns], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) NoPattern -> (AlgebraicPatterns global_type_index [pattern], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) = case pattern_scheme of AlgebraicPatterns alg_type _ | global_type_index == alg_type # alg_patterns = alg_patterns_of_AlgebraicPatterns_or_NoPattern patterns -> (AlgebraicPatterns global_type_index [pattern : alg_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) # cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) NoPattern -> (AlgebraicPatterns global_type_index [pattern], AlgebraicPatterns global_type_index [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) where alg_patterns_of_AlgebraicPatterns_or_NoPattern (AlgebraicPatterns _ alg_patterns) = alg_patterns alg_patterns_of_AlgebraicPatterns_or_NoPattern NoPattern = [] alg_patterns_of_OverloadedListPatterns_or_NoPattern (OverloadedListPatterns _ _ alg_patterns) = alg_patterns alg_patterns_of_OverloadedListPatterns_or_NoPattern NoPattern = [] illegal_combination_of_patterns_error cons_symbol cs = { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error } replace_overloaded_symbols_in_patterns [] pd_cons_symbol pd_nil_symbol cs = ([],cs) replace_overloaded_symbols_in_patterns [pattern=:{ap_symbol={glob_module,glob_object}}:patterns] pd_cons_symbol pd_nil_symbol cs # (pattern,cs) = replace_overloaded_symbol_in_pattern pattern pd_cons_symbol pd_nil_symbol cs # (patterns,cs) = replace_overloaded_symbols_in_patterns patterns pd_cons_symbol pd_nil_symbol cs = ([pattern:patterns],cs) replace_overloaded_symbol_in_pattern pattern=:{ap_symbol={glob_module,glob_object}} pd_cons_symbol pd_nil_symbol cs | glob_module==cPredefinedModuleIndex # index=glob_object.ds_index+FirstConstructorPredefinedSymbolIndex | index==PD_OverloadedConsSymbol # ({pds_def},cs) = cs!cs_predef_symbols.[pd_cons_symbol] # pds_ident = predefined_idents.[pd_cons_symbol] # glob_object = {glob_object & ds_index=pds_def,ds_ident=pds_ident} = ({pattern & ap_symbol.glob_object=glob_object},cs) | index==PD_OverloadedNilSymbol # ({pds_def},cs) = cs!cs_predef_symbols.[pd_nil_symbol] # pds_ident = predefined_idents.[pd_nil_symbol] # glob_object = {glob_object & ds_index=pds_def,ds_ident=pds_ident} = ({pattern & ap_symbol.glob_object=glob_object},cs) = abort "replace_overloaded_symbol_in_pattern" transform_pattern (AP_Basic basic_val opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs # pattern = { bp_value = basic_val, bp_expr = result_expr, bp_position = pos} pattern_variables = cons_optional opt_var pattern_variables (type_symbol, cs) = typeOfBasicValue basic_val cs = case pattern_scheme of BasicPatterns basic_type _ | type_symbol == basic_type # basic_patterns = case patterns of BasicPatterns _ basic_patterns -> basic_patterns NoPattern -> [] -> (BasicPatterns basic_type [pattern : basic_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError basic_val "incompatible types of patterns" cs.cs_error }) NoPattern -> (BasicPatterns type_symbol [pattern], BasicPatterns type_symbol [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError basic_val "illegal combination of patterns" cs.cs_error}) transform_pattern (AP_Dynamic pattern type opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs # (var_arg, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr pos var_store expr_heap opt_dynamics cs (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap pattern = { dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_code = TCE_Empty, dp_position = pos } pattern_variables = cons_optional opt_var pattern_variables = case pattern_scheme of DynamicPatterns _ # dyn_patterns = case patterns of DynamicPatterns dyn_patterns -> dyn_patterns NoPattern -> [] -> (DynamicPatterns [pattern : dyn_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs) NoPattern -> (DynamicPatterns [pattern], DynamicPatterns [], pattern_variables, defaul, var_store, expr_heap, [dynamic_info_ptr], cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError "" "illegal combination of patterns" cs.cs_error }) transform_pattern (AP_Variable name var_info opt_var) NoPattern pattern_scheme pattern_variables No result_expr _ pos var_store expr_heap opt_dynamics cs = ( NoPattern, pattern_scheme, cons_optional opt_var pattern_variables, Yes (Yes { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr), var_store, expr_heap, opt_dynamics, cs) transform_pattern (AP_Variable name var_info opt_var) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs # free_var = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 } (new_bound_var, expr_heap) = allocate_bound_var free_var expr_heap case_ident = { id_name = case_name, id_info = nilPtr } (new_case, var_store, expr_heap) = build_and_share_case patterns defaul (Var new_bound_var) case_ident cCaseExplicit var_store expr_heap new_defaul = insert_as_default result_expr new_case = (NoPattern, pattern_scheme, (cons_optional opt_var pattern_variables), Yes (Yes free_var, new_defaul), var_store, expr_heap, opt_dynamics, cs) where insert_as_default :: !Expression !Expression -> Expression insert_as_default (Let lad=:{let_expr}) to_insert = Let { lad & let_expr = insert_as_default let_expr to_insert } insert_as_default (Case kees=:{case_default,case_explicit=False}) to_insert = case case_default of No -> Case { kees & case_default = Yes to_insert } Yes defaul -> Case { kees & case_default = Yes (insert_as_default defaul to_insert)} insert_as_default expr _ = expr // checkWarning "pattern won't match" transform_pattern (AP_NewType cons_symbol type_index arg opt_var) patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs # (var_arg, result_expr, _, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern arg result_expr pos var_store expr_heap opt_dynamics cs type_symbol = {gi_module = cons_symbol.glob_module, gi_index = type_index} pattern_variables = cons_optional opt_var pattern_variables # pattern = { ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pos} = case pattern_scheme of NewTypePatterns alg_type _ | type_symbol == alg_type # newtype_patterns = case patterns of NewTypePatterns _ newtype_patterns -> newtype_patterns NoPattern -> [] -> (NewTypePatterns type_symbol [pattern : newtype_patterns], pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "incompatible types of patterns" cs.cs_error }) NoPattern -> (NewTypePatterns type_symbol [pattern], NewTypePatterns type_symbol [], pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) _ -> (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics,illegal_combination_of_patterns_error cons_symbol cs) where illegal_combination_of_patterns_error cons_symbol cs = { cs & cs_error = checkError cons_symbol.glob_object.ds_ident "illegal combination of patterns" cs.cs_error } transform_pattern (AP_WildCard (Yes opt_var)) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs = transform_pattern (AP_Variable opt_var.bind_src opt_var.bind_dst No) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs transform_pattern (AP_WildCard no) NoPattern pattern_scheme pattern_variables No result_expr _ pos var_store expr_heap opt_dynamics cs = (NoPattern, pattern_scheme, pattern_variables, Yes (No, result_expr), var_store, expr_heap, opt_dynamics, cs) transform_pattern (AP_WildCard _) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs # (new_info_ptr, var_store) = newPtr VI_Empty var_store = transform_pattern (AP_Variable (newVarId "wc") new_info_ptr No) patterns pattern_scheme pattern_variables defaul result_expr case_name pos var_store expr_heap opt_dynamics cs transform_pattern AP_Empty patterns pattern_scheme pattern_variables defaul result_expr _ pos var_store expr_heap opt_dynamics cs = (patterns, pattern_scheme, pattern_variables, defaul, var_store, expr_heap, opt_dynamics, cs) build_and_share_case patterns defaul expr case_ident explicit var_heap expr_heap # (expr, expr_heap) = build_case patterns defaul expr case_ident explicit expr_heap = share_case_expr expr var_heap expr_heap where build_case NoPattern defaul expr case_ident explicit expr_heap = case defaul of Yes (opt_var, result) -> case opt_var of Yes var -> bind_default_variable expr var result expr_heap No -> (result, expr_heap) No -> (EE, expr_heap) build_case (DynamicPatterns patterns) defaul expr case_ident explicit expr_heap = case defaul of Yes (opt_var, result) -> case opt_var of Yes var # (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap (bound_var, expr_heap) = allocate_bound_var var expr_heap result = buildTypeCase (Var bound_var) patterns (Yes result) type_case_info_ptr cCaseExplicit -> bind_default_variable expr var result expr_heap No # (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (buildTypeCase expr patterns (Yes result) type_case_info_ptr cCaseExplicit, expr_heap) No # (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (buildTypeCase expr patterns No type_case_info_ptr cCaseExplicit, expr_heap) build_case patterns (Yes (opt_var,result)) expr case_ident explicit expr_heap = case opt_var of Yes var # (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (bound_var, expr_heap) = allocate_bound_var var expr_heap result = Case {case_expr = Var bound_var, case_guards = patterns, case_default = Yes result, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr, case_explicit = explicit, case_default_pos = NoPos } -> bind_default_variable expr var result expr_heap No # (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap -> (Case {case_expr = expr, case_guards = patterns, case_default = Yes result, case_explicit = explicit, case_ident = Yes case_ident, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, expr_heap) build_case patterns No expr case_ident explicit expr_heap # (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Case {case_expr = expr, case_guards = patterns, case_default = No, case_ident = Yes case_ident, case_explicit = explicit, case_info_ptr = case_expr_ptr, case_default_pos = NoPos }, expr_heap) // make sure that the case_expr is a variable, because that's needed for merging // the alternatives in cases (in transform.icl) // FIXME: this should be represented in the syntax tree: change case_expr to // case_var :: BoundVar in Case share_case_expr (Let lad=:{let_expr}) var_heap expr_heap # (let_expr, var_heap, expr_heap) = share_case_expr let_expr var_heap expr_heap = (Let {lad & let_expr = let_expr}, var_heap, expr_heap) share_case_expr expr=:(Case {case_expr=Var var_ptr}) var_heap expr_heap = (expr, var_heap, expr_heap) share_case_expr (Case kees=:{case_expr}) var_heap expr_heap # (free_var, var_heap) = allocate_free_var { id_name = "_case_var", id_info = nilPtr } var_heap (bound_var, expr_heap) = allocate_bound_var free_var expr_heap (case_expression, expr_heap) = bind_default_variable case_expr free_var (Case {kees & case_expr = Var bound_var}) expr_heap = (case_expression, var_heap, expr_heap) share_case_expr expr var_heap expr_heap = (expr, var_heap, expr_heap) bind_default_variable lb_src lb_dst result_expr expr_heap # (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Let {let_strict_binds = [], let_lazy_binds = [{ lb_src = lb_src, lb_dst = lb_dst, lb_position = NoPos }], let_expr = result_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos }, expr_heap) cons_optional (Yes var) variables = [ var : variables ] cons_optional No variables = variables checkIdentExpression :: !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!Expression, ![FreeVar], !*ExpressionState,!u:ExpressionInfo,!*CheckState) checkIdentExpression is_expr_list free_vars id=:{id_info} e_input e_state e_info cs=:{cs_symbol_table} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table = check_id_expression entry is_expr_list free_vars id e_input e_state e_info { cs & cs_symbol_table = cs_symbol_table } where check_id_expression :: !SymbolTableEntry !Bool ![FreeVar] !Ident !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!Expression, ![FreeVar], !*ExpressionState,!u:ExpressionInfo,!*CheckState) check_id_expression {ste_kind = STE_Empty} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error,cs_predef_symbols,cs_x} # local_predefined_idents = predefined_idents # from_ident = local_predefined_idents.[PD_From] from_then_ident = local_predefined_idents.[PD_FromThen] from_to_ident = local_predefined_idents.[PD_FromTo] from_then_to_ident = local_predefined_idents.[PD_FromThenTo] | id==from_ident || id==from_then_ident || id==from_to_ident || id==from_then_to_ident = (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cStdEnumImportMissing}) // instead of giving an error message remember that StdEnum should have been imported. // Error will be given in function check_needed_modules_are_imported | id==local_predefined_idents.[PD_FromS] || id==local_predefined_idents.[PD_FromTS] || id==local_predefined_idents.[PD_FromSTS] || id==local_predefined_idents.[PD_FromU] || id==local_predefined_idents.[PD_FromUTS] || id==local_predefined_idents.[PD_FromO] || id==local_predefined_idents.[PD_FromThenS] || id==local_predefined_idents.[PD_FromThenTS] || id==local_predefined_idents.[PD_FromThenSTS] || id==local_predefined_idents.[PD_FromThenU] || id==local_predefined_idents.[PD_FromThenUTS] || id==local_predefined_idents.[PD_FromThenO] || id==local_predefined_idents.[PD_FromToS] || id==local_predefined_idents.[PD_FromToTS] || id==local_predefined_idents.[PD_FromToSTS] || id==local_predefined_idents.[PD_FromToU] || id==local_predefined_idents.[PD_FromToUTS] || id==local_predefined_idents.[PD_FromToO] || id==local_predefined_idents.[PD_FromThenToS] || id==local_predefined_idents.[PD_FromThenToTS] || id==local_predefined_idents.[PD_FromThenToSTS] || id==local_predefined_idents.[PD_FromThenToU] || id==local_predefined_idents.[PD_FromThenToUTS] || id==local_predefined_idents.[PD_FromThenToO] = (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cNeedStdStrictLists}) # createArray_ident = local_predefined_idents.[PD__CreateArrayFun] uselect_ident = local_predefined_idents.[PD_UnqArraySelectFun] update_ident = local_predefined_idents.[PD_ArrayUpdateFun] usize_ident = local_predefined_idents.[PD_UnqArraySizeFun] | id==createArray_ident || id==uselect_ident || id==update_ident || id==usize_ident = (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cStdArrayImportMissing}) // instead of giving an error message remember that StdArray should have been be imported. // Error will be given in function check_needed_modules_are_imported | id==local_predefined_idents.[PD_cons] || id==local_predefined_idents.[PD_decons] || id==local_predefined_idents.[PD_cons_u] || id==local_predefined_idents.[PD_decons_u] || id==local_predefined_idents.[PD_cons_uts] || id==local_predefined_idents.[PD_decons_uts] || id==local_predefined_idents.[PD_nil] || id==local_predefined_idents.[PD_nil_u] || id==local_predefined_idents.[PD_nil_uts] = (EE, free_vars, e_state, e_info, { cs & cs_x.x_needed_modules = cs_x.x_needed_modules bitor cNeedStdStrictLists}) // instead report that StdStrictLists should be imported in function check_needed_modules_are_imported = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "undefined" cs_error }) check_id_expression {ste_kind = STE_Variable info_ptr,ste_def_level} is_expr_list free_vars id e_input=:{ei_fun_level} e_state=:{es_expr_heap} e_info cs | ste_def_level < ei_fun_level # free_var = { fv_def_level = ste_def_level, fv_ident = id, fv_info_ptr = info_ptr, fv_count = 0 } (free_var_added, free_vars) = newFreeVariable free_var free_vars = (FreeVar free_var, free_vars, e_state, e_info, cs) #! (var_expr_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap = (Var {var_ident = id, var_info_ptr = info_ptr, var_expr_ptr = var_expr_ptr}, free_vars, {e_state & es_expr_heap = es_expr_heap}, e_info, cs) check_id_expression {ste_kind = STE_Generic} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error} = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "generic: missing kind argument" cs_error}) check_id_expression {ste_kind = STE_Imported STE_Generic _} is_expr_list free_vars id e_input e_state e_info cs=:{cs_error} = (EE, free_vars, e_state, e_info, { cs & cs_error = checkError id "generic: missing kind argument" cs_error}) check_id_expression entry is_expr_list free_vars id=:{id_info} e_input e_state e_info cs # (symb_kind, arity, priority, e_state, e_info, cs) = determine_info_of_symbol entry id_info e_input e_state e_info cs symbol = { symb_ident = id, symb_kind = symb_kind } | is_expr_list = (Constant symbol arity priority, free_vars, e_state, e_info, cs) = case symb_kind of SK_Constructor _ # app_expr = App {app_symb = symbol, app_args = [], app_info_ptr = nilPtr} -> (app_expr, free_vars, e_state, e_info, cs) SK_OverloadedConstructor cons_index # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap app_expr = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = [], app_info_ptr = new_info_ptr} -> (app_expr, free_vars, {e_state & es_expr_heap = es_expr_heap}, e_info, cs) SK_NewTypeConstructor _ # cs = { cs & cs_error = checkError id "argument missing (for newtype constructor)" cs.cs_error} # app_expr = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr } -> (app_expr, free_vars, e_state, e_info, cs) _ # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap # app_expr = App { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr } -> (app_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs) determine_info_of_symbol :: !SymbolTableEntry !SymbolPtr !ExpressionInput !*ExpressionState !u:ExpressionInfo !*CheckState -> (!SymbKind, !Int, !Priority, !*ExpressionState, !u:ExpressionInfo,!*CheckState) determine_info_of_symbol entry=:{ste_kind=STE_FunctionOrMacro calls,ste_index,ste_def_level} symb_info e_input=:{ei_fun_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table,cs_x} # (fun_def,e_state) = e_state!es_fun_defs.[ste_index] # {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=fun_def # index = { glob_object = ste_index, glob_module = cs_x.x_main_dcl_module_n } # symbol_kind = convert_DefOrImpFunKind_to_icl_SymbKind fun_kind index fi_properties | is_called_before ei_fun_index calls = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) # cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_FunctionOrMacro [ ei_fun_index : calls ]})} # e_state = { e_state & es_calls = [FunCall ste_index ste_def_level : es_calls ]} = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) determine_info_of_symbol entry=:{ste_kind=STE_DclMacroOrLocalMacroFunction calls,ste_index,ste_def_level} symb_info e_input=:{ei_fun_index, ei_mod_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table} # (macro_def,e_info) = e_info!ef_macro_defs.[ei_mod_index,ste_index] # {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def # index = { glob_object = ste_index, glob_module = ei_mod_index } # symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties | is_called_before ei_fun_index calls = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) # cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]})} # e_state = { e_state & es_calls = [MacroCall ei_mod_index ste_index ste_def_level : es_calls ]} = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) determine_info_of_symbol entry=:{ste_kind=STE_Imported (STE_DclMacroOrLocalMacroFunction calls) macro_mod_index,ste_index,ste_def_level} symb_info e_input=:{ei_fun_index} e_state=:{es_calls} e_info cs=:{cs_symbol_table} # (macro_def,e_info) = e_info!ef_macro_defs.[macro_mod_index,ste_index] # {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def # index = { glob_object = ste_index, glob_module = macro_mod_index } # symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties | is_called_before ei_fun_index calls = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) # cs = { cs & cs_symbol_table = cs_symbol_table <:= (symb_info, { entry & ste_kind = STE_Imported (STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]) macro_mod_index})} # e_state = { e_state & es_calls = [MacroCall macro_mod_index ste_index ste_def_level : es_calls ]} = (symbol_kind, fun_arity, fun_priority, e_state, e_info, cs) determine_info_of_symbol entry=:{ste_kind=STE_Imported STE_DclFunction mod_index,ste_index} symb_index e_input e_state=:{es_calls} e_info=:{ef_is_macro_fun} cs # ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_functions.[ste_index] # kind = SK_Function { glob_object = ste_index, glob_module = mod_index } | not ef_is_macro_fun = (kind, st_arity, ft_priority, e_state, e_info, cs) | dcl_fun_is_called_before ste_index mod_index es_calls = (kind, st_arity, ft_priority, e_state, e_info , cs) # e_state = { e_state & es_calls = [DclFunCall mod_index ste_index : es_calls ]} = (kind, st_arity, ft_priority, e_state, e_info, cs) determine_info_of_symbol entry=:{ste_kind=STE_Imported kind mod_index,ste_index} symb_index e_input e_state e_info=:{ef_modules} cs # (mod_def, ef_modules) = ef_modules![mod_index] # (kind, arity, priority) = ste_kind_to_symbol_kind kind ste_index mod_index mod_def = (kind, arity, priority, e_state, { e_info & ef_modules = ef_modules }, cs) where ste_kind_to_symbol_kind :: !STE_Kind !Index !Index !DclModule -> (!SymbKind, !Int, !Priority); ste_kind_to_symbol_kind STE_Member def_index mod_index {dcl_common={com_member_defs}} # {me_type={st_arity},me_priority} = com_member_defs.[def_index] = (SK_OverloadedFunction { glob_object = def_index, glob_module = mod_index }, st_arity, me_priority) ste_kind_to_symbol_kind STE_Constructor def_index mod_index {dcl_common={com_cons_defs}} # {cons_type={st_arity,st_args,st_context},cons_priority,cons_number} = com_cons_defs.[def_index] | cons_number <> -2 | isEmpty st_context && no_TFAC_argument st_args = (SK_Constructor {glob_object = def_index, glob_module = mod_index}, st_arity, cons_priority) = (SK_OverloadedConstructor {glob_object = def_index, glob_module = mod_index}, st_arity, cons_priority) = (SK_NewTypeConstructor {gi_index = def_index, gi_module = mod_index}, st_arity, cons_priority) determine_info_of_symbol {ste_kind=STE_Member, ste_index} _ e_input=:{ei_mod_index} e_state e_info=:{ef_member_defs} cs # ({me_type={st_arity},me_priority}, ef_member_defs) = ef_member_defs![ste_index] = (SK_OverloadedFunction { glob_object = ste_index, glob_module = ei_mod_index}, st_arity, me_priority, e_state, { e_info & ef_member_defs = ef_member_defs }, cs) determine_info_of_symbol {ste_kind=STE_Constructor, ste_index} _ e_input=:{ei_mod_index} e_state e_info cs # ({cons_type={st_arity,st_args,st_context},cons_priority,cons_number}, e_info) = e_info!ef_cons_defs.[ste_index] | cons_number <> -2 | isEmpty st_context && no_TFAC_argument st_args = (SK_Constructor {glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs) = (SK_OverloadedConstructor {glob_object = ste_index, glob_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs) = (SK_NewTypeConstructor {gi_index = ste_index, gi_module = ei_mod_index}, st_arity, cons_priority, e_state, e_info, cs) determine_info_of_symbol {ste_kind=STE_DclFunction, ste_index} _ e_input=:{ei_mod_index} e_state=:{es_calls} e_info=:{ef_is_macro_fun} cs # ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[ei_mod_index].dcl_functions.[ste_index] # kind = SK_Function { glob_object = ste_index, glob_module = ei_mod_index } | not ef_is_macro_fun = (kind, st_arity, ft_priority, e_state, e_info, cs) | dcl_fun_is_called_before ste_index ei_mod_index es_calls = (kind, st_arity, ft_priority, e_state, e_info, cs) # e_state = { e_state & es_calls = [DclFunCall ei_mod_index ste_index : es_calls ]} = (kind, st_arity, ft_priority, e_state, e_info, cs) convert_DefOrImpFunKind_to_icl_SymbKind FK_Macro index fi_properties = SK_IclMacro index.glob_object; convert_DefOrImpFunKind_to_icl_SymbKind _ index fi_properties | fi_properties bitand FI_IsMacroFun <> 0 = SK_LocalMacroFunction index.glob_object = SK_Function index no_TFAC_argument [{at_type=TFAC _ _ _}:_] = False no_TFAC_argument [_:args] = no_TFAC_argument args no_TFAC_argument [] = True checkQualifiedIdentExpression free_vars module_id ident_name is_expr_list e_input=:{ei_fun_index,ei_mod_index} e_state e_info cs # (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id ident_name ExpressionNameSpaceN cs | not found = (EE, free_vars, e_state, e_info, cs) = case decl_kind of STE_Imported STE_DclFunction mod_index # ({ft_type={st_arity},ft_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_functions.[decl_index] # kind = SK_Function { glob_object = decl_index, glob_module = mod_index } # symbol = { symb_ident = decl_ident, symb_kind = kind } # (app_expr, e_state) = build_application_or_constant_for_function symbol st_arity ft_priority e_state | not e_info.ef_is_macro_fun || dcl_fun_is_called_before decl_index mod_index e_state.es_calls -> (app_expr, free_vars, e_state, e_info, cs) # e_state = { e_state & es_calls = [DclFunCall mod_index decl_index : e_state.es_calls ]} -> (app_expr, free_vars, e_state, e_info, cs) STE_Imported STE_Constructor mod_index # ({cons_type={st_arity,st_context},cons_priority,cons_number}, e_info) = e_info!ef_modules.[mod_index].dcl_common.com_cons_defs.[decl_index] | cons_number <> -2 # kind = SK_Constructor { glob_object = decl_index, glob_module = mod_index } symbol = { symb_ident = decl_ident, symb_kind = kind } | isEmpty st_context # (app_expr,e_state) = build_application_or_constant_for_function symbol st_arity cons_priority e_state -> (app_expr, free_vars, e_state, e_info, cs) # app_expr = build_application_or_constant_for_constructor symbol st_arity cons_priority -> (app_expr, free_vars, e_state, e_info, cs) # kind = SK_NewTypeConstructor { gi_index = decl_index, gi_module = mod_index } # symbol = { symb_ident = decl_ident, symb_kind = kind } # app_expr = build_application_or_constant_for_constructor symbol st_arity cons_priority -> (app_expr, free_vars, e_state, e_info, cs) STE_Imported STE_Member mod_index # ({me_type={st_arity},me_priority}, e_info) = e_info!ef_modules.[mod_index].dcl_common.com_member_defs.[decl_index] # kind = SK_OverloadedFunction { glob_object = decl_index, glob_module = mod_index } # symbol = { symb_ident = decl_ident, symb_kind = kind } # (app_expr, e_state) = build_application_or_constant_for_function symbol st_arity me_priority e_state -> (app_expr, free_vars, e_state, e_info, cs) STE_Imported (STE_DclMacroOrLocalMacroFunction _) mod_index # (macro_def,e_info) = e_info!ef_macro_defs.[mod_index,decl_index] # {fun_ident,fun_arity,fun_kind,fun_priority,fun_info={fi_properties}}=macro_def # index = { glob_object = decl_index, glob_module = mod_index } # symbol_kind = convert_DefOrImpFunKind_to_dcl_SymbKind fun_kind index fi_properties # (e_state,cs) = add_call e_state decl_ident.id_info cs with add_call e_state=:{es_calls} symbol_table_ptr cs # (entry=:{ste_kind,ste_index,ste_def_level},cs_symbol_table) = readPtr symbol_table_ptr cs.cs_symbol_table # cs = {cs & cs_symbol_table=cs_symbol_table} = case ste_kind of /* also imported unqualified */ STE_Imported (STE_DclMacroOrLocalMacroFunction calls) ste_mod_index | ste_index==decl_index && ste_mod_index==mod_index | is_called_before ei_fun_index calls -> (e_state,cs) # entry = {entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]} # cs = {cs & cs_symbol_table = writePtr symbol_table_ptr entry cs.cs_symbol_table} -> ({e_state & es_calls = [MacroCall ste_mod_index ste_index ste_def_level : es_calls ]},cs) /* also imported unqualified */ STE_DclMacroOrLocalMacroFunction calls | ste_index==decl_index && mod_index==ei_mod_index | is_called_before ei_fun_index calls -> (e_state,cs) # entry = {entry & ste_kind = STE_DclMacroOrLocalMacroFunction [ ei_fun_index : calls ]} # cs = {cs & cs_symbol_table = writePtr symbol_table_ptr entry cs.cs_symbol_table} -> ({e_state & es_calls = [MacroCall ei_mod_index ste_index ste_def_level : es_calls ]},cs) _ | macro_is_called_before decl_index mod_index es_calls -> (e_state,cs) -> ({ e_state & es_calls = [MacroCall mod_index decl_index (-1) : es_calls ]},cs) macro_is_called_before decl_index mod_index [] = False macro_is_called_before decl_index mod_index [MacroCall macro_mod_index macro_index level:calls] = (decl_index==macro_index && mod_index==macro_mod_index && level==(-1)) || macro_is_called_before decl_index mod_index calls macro_is_called_before decl_index mod_index [_:calls] = macro_is_called_before decl_index mod_index calls # symbol = { symb_ident = decl_ident, symb_kind = symbol_kind } # (app_expr, e_state) = build_application_or_constant_for_function symbol fun_arity fun_priority e_state -> (app_expr, free_vars, e_state, e_info, cs) _ -> (EE, free_vars, e_state, e_info, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++ident_name) "not imported" cs.cs_error }) where build_application_or_constant_for_function symbol arity priority e_state | is_expr_list = (Constant symbol arity priority, e_state) # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap # app = { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr } = (App app, { e_state & es_expr_heap = es_expr_heap }) build_application_or_constant_for_constructor symbol arity priority | is_expr_list = Constant symbol arity priority = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr } convert_DefOrImpFunKind_to_dcl_SymbKind FK_Macro index fi_properties = SK_DclMacro index; convert_DefOrImpFunKind_to_dcl_SymbKind _ index fi_properties | fi_properties bitand FI_IsMacroFun <> 0 = SK_LocalDclMacroFunction index = SK_Function index is_called_before caller_index [] = False is_called_before caller_index [called_index : calls] = caller_index == called_index || is_called_before caller_index calls dcl_fun_is_called_before ste_index mod_index [] = False dcl_fun_is_called_before ste_index mod_index [DclFunCall dcl_fun_mod_index dcl_fun_index:calls] = (ste_index==dcl_fun_index && mod_index==dcl_fun_mod_index) || dcl_fun_is_called_before ste_index mod_index calls dcl_fun_is_called_before ste_index mod_index [_:calls] = dcl_fun_is_called_before ste_index mod_index calls checkPattern :: !ParsedExpr !(Optional (Bind Ident VarInfoPtr)) !PatternInput !(![Ident], ![ArrayPattern]) !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, !(![Ident], ![ArrayPattern]), !*PatternState, !*ExpressionInfo, !*CheckState) checkPattern (PE_List [exp]) opt_var p_input accus ps e_info cs=:{cs_symbol_table} = case exp of PE_Ident ident -> checkIdentPattern cIsNotInExpressionList ident opt_var p_input accus ps e_info cs PE_QualifiedIdent module_id ident_name -> checkQualifiedIdentPattern cIsNotInExpressionList module_id ident_name opt_var p_input accus ps e_info cs _ -> checkPattern exp opt_var p_input accus ps e_info cs checkPattern (PE_List [exp1, exp2 : exps]) opt_var p_input accus ps e_info cs # (exp_pat, accus, ps, e_info, cs) = check_pattern exp1 p_input accus ps e_info cs = check_patterns [exp_pat] exp2 exps opt_var p_input accus ps e_info cs where check_patterns left middle [] opt_var p_input=:{pi_mod_index} accus ps e_info cs # (mid_pat, accus, ps, e_info, cs) = checkPattern middle No p_input accus ps e_info cs (pat, ps, e_info, cs) = combine_patterns pi_mod_index opt_var [mid_pat : left] [] 0 ps e_info cs = (pat, accus, ps, e_info, cs) check_patterns left middle [right:rest] opt_var p_input=:{pi_mod_index} accus ps e_info cs # (mid_pat, accus, ps, e_info, cs) = check_pattern middle p_input accus ps e_info cs = case mid_pat of AP_Constant kind constant=:{glob_object={ds_arity,ds_ident}} prio | ds_arity == 0 # (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind constant [] No ps e_info cs -> check_patterns [pattern: left] right rest opt_var p_input accus ps e_info cs | is_infix_constructor prio # (left_arg, ps, e_info, cs) = combine_patterns pi_mod_index No left [] 0 ps e_info cs (right_pat, accus, ps, e_info, cs) = check_pattern right p_input accus ps e_info cs -> check_infix_pattern [] left_arg kind constant prio [right_pat] rest opt_var p_input accus ps e_info cs -> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error }) _ -> check_patterns [mid_pat : left] right rest opt_var p_input accus ps e_info cs check_pattern (PE_Ident id) p_input accus ps e_info cs = checkIdentPattern cIsInExpressionList id No p_input accus ps e_info cs check_pattern (PE_QualifiedIdent module_id ident_name) p_input accus ps e_info cs = checkQualifiedIdentPattern cIsInExpressionList module_id ident_name No p_input accus ps e_info cs check_pattern expr p_input accus ps e_info cs = checkPattern expr No p_input accus ps e_info cs check_infix_pattern left_args left kind cons prio middle [] opt_var p_input=:{pi_mod_index} accus ps e_info cs # (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,middle_pat] opt_var ps e_info cs (pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs = (pattern, accus, ps, e_info, cs) check_infix_pattern left_args left kind cons prio middle [right] opt_var p_input=:{pi_mod_index} accus ps e_info cs # (right_pat, accus, ps, e_info, cs) = checkPattern right No p_input accus ps e_info cs (right_arg, ps, e_info, cs) = combine_patterns pi_mod_index No [right_pat : middle] [] 0 ps e_info cs (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind cons [left,right_arg] opt_var ps e_info cs (pattern, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern ps e_info cs = (pattern, accus, ps, e_info, cs) check_infix_pattern left_args left kind1 cons1 prio1 middle [inf_cons, arg : rest] opt_var p_input=:{pi_mod_index} accus ps e_info cs # (inf_cons_pat, accus, ps, e_info, cs) = check_pattern inf_cons p_input accus ps e_info cs = case inf_cons_pat of AP_Constant kind2 cons2=:{glob_object={ds_ident,ds_arity}} prio2 | ds_arity == 0 # (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs (pattern2, ps, e_info, cs) = buildPattern pi_mod_index kind2 cons2 [] No ps e_info cs (pattern1, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,middle_pat] No ps e_info cs (pattern1, ps, e_info, cs) = build_final_pattern pi_mod_index left_args pattern1 ps e_info cs -> check_patterns [pattern2,pattern1] arg rest opt_var p_input accus ps e_info cs | is_infix_constructor prio2 # optional_prio = determinePriority prio1 prio2 -> case optional_prio of Yes priority # (arg_pat, accus, ps, e_info, cs) = check_pattern arg p_input accus ps e_info cs | priority # (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs (pattern, ps, e_info, cs) = buildPattern pi_mod_index kind1 cons1 [left,middle_pat] No ps e_info cs (left_args, pattern, ps, e_info, cs) = build_left_pattern pi_mod_index left_args prio2 pattern ps e_info cs -> check_infix_pattern left_args pattern kind2 cons2 prio2 [arg_pat] rest opt_var p_input accus ps e_info cs # (middle_pat, ps, e_info, cs) = combine_patterns pi_mod_index No middle [] 0 ps e_info cs -> check_infix_pattern [(kind1, cons1, prio1, left) : left_args] middle_pat kind2 cons2 prio2 [arg_pat] rest No p_input accus ps e_info cs No -> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ds_ident "conflicting priorities" cs.cs_error }) -> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ds_ident "arguments of constructor are missing" cs.cs_error }) _ -> check_infix_pattern left_args left kind1 cons1 prio1 [inf_cons_pat : middle] [arg : rest] opt_var p_input accus ps e_info cs is_infix_constructor (Prio _ _) = True is_infix_constructor _ = False build_left_pattern mod_index [] _ result_pattern ps e_info cs = ([], result_pattern, ps, e_info, cs) build_left_pattern mod_index la=:[(kind, cons, priol, left) : left_args] prior result_pattern ps e_info cs # optional_prio = determinePriority priol prior = case optional_prio of Yes priority | priority # (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs -> build_left_pattern mod_index left_args prior result_pattern ps e_info cs -> (la, result_pattern, ps, e_info, cs) No -> (la, result_pattern, ps, e_info,{ cs & cs_error = checkError cons.glob_object.ds_ident "conflicting priorities" cs.cs_error }) build_final_pattern mod_index [] result_pattern ps e_info cs = (result_pattern, ps, e_info, cs) build_final_pattern mod_index [(kind, cons, priol, left) : left_appls] result_pattern ps e_info cs # (result_pattern, ps, e_info, cs) = buildPattern mod_index kind cons [left,result_pattern] No ps e_info cs = build_final_pattern mod_index left_appls result_pattern ps e_info cs combine_patterns mod_index opt_var [first_expr] args nr_of_args ps e_info cs = case first_expr of AP_Constant kind constant=:{glob_object={ds_ident,ds_arity}} _ | ds_arity == nr_of_args || (case kind of APK_Macro _ -> True _ -> False) # (pattern, ps, e_info, cs) = buildPattern mod_index kind constant args opt_var ps e_info cs -> (pattern, ps, e_info, cs) -> (AP_Empty, ps, e_info, { cs & cs_error = checkError ds_ident "used with wrong arity" cs.cs_error}) _ | nr_of_args == 0 -> (first_expr, ps, e_info, cs) -> (first_expr, ps, e_info, { cs & cs_error = checkError "" "(curried) application not allowed " cs.cs_error }) combine_patterns mod_index opt_var [rev_arg : rev_args] args arity ps e_info cs = combine_patterns mod_index opt_var rev_args [rev_arg : args] (inc arity) ps e_info cs checkPattern (PE_DynamicPattern pattern type) opt_var p_input accus ps e_info cs # (dyn_pat, accus, ps, e_info, cs) = checkPattern pattern No p_input accus ps e_info cs = (AP_Dynamic dyn_pat type opt_var, accus, ps, e_info, { cs & cs_x.x_needed_modules = cs.cs_x.x_needed_modules bitor cNeedStdDynamic }) checkPattern (PE_Basic basic_value) opt_var p_input accus ps e_info cs = (AP_Basic basic_value opt_var, accus, ps, e_info, cs) checkPattern (PE_Tuple tuple_args) opt_var p_input accus ps e_info cs # (patterns, arity, accus, ps, e_info, cs) = check_tuple_patterns tuple_args p_input accus ps e_info cs (tuple_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex arity) PD_PredefinedModule STE_Constructor arity cs # ({cons_type_index}, e_info) = e_info!ef_modules.[tuple_symbol.glob_module].dcl_common.com_cons_defs.[tuple_symbol.glob_object.ds_index] # global_type_index = {gi_module = cPredefinedModuleIndex, gi_index = cons_type_index} = (AP_Algebraic tuple_symbol global_type_index patterns opt_var, accus, ps, e_info, cs) where check_tuple_patterns [] p_input accus ps e_info cs = ([], 0, accus, ps, e_info, cs) check_tuple_patterns [expr : exprs] p_input accus ps e_info cs # (pattern, accus, ps, e_info, cs) = checkPattern expr No p_input accus ps e_info cs (patterns, length, accus, ps, e_info, cs) = check_tuple_patterns exprs p_input accus ps e_info cs = ([pattern : patterns], inc length, accus, ps, e_info, cs) checkPattern (PE_Record record opt_type fields) opt_var p_input=:{pi_mod_index, pi_is_node_pattern} accus=:(var_env, array_patterns) ps e_info cs # (opt_record_and_fields, e_info, cs) = checkFields pi_mod_index fields opt_type e_info cs = case opt_record_and_fields of Yes (record_symbol, type_index, new_fields) # (patterns, (var_env, array_patterns, ps, e_info, cs)) = mapSt (check_field_pattern p_input) new_fields (var_env, array_patterns, ps, e_info, cs) (patterns, ps_var_heap) = bind_opt_record_variable opt_var pi_is_node_pattern patterns new_fields ps.ps_var_heap global_type_index = {gi_module = record_symbol.glob_module, gi_index = type_index} -> (AP_Algebraic record_symbol global_type_index patterns opt_var, (var_env, array_patterns), {ps & ps_var_heap = ps_var_heap}, e_info, cs) No -> (AP_Empty, accus, ps, e_info, cs) where check_field_pattern p_input=:{pi_def_level} {bind_src = PE_Empty, bind_dst = {glob_object={fs_var}}} (var_env, array_patterns, ps, e_info, cs) # (entry, cs_symbol_table) = readPtr fs_var.id_info cs.cs_symbol_table # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable pi_def_level entry fs_var new_info_ptr { cs & cs_symbol_table = cs_symbol_table } = (AP_Variable fs_var new_info_ptr No, ([ fs_var : var_env ], array_patterns, { ps & ps_var_heap = ps_var_heap }, e_info, cs)) check_field_pattern p_input {bind_src = PE_WildCard, bind_dst={glob_object={fs_var}}} (var_env, array_patterns, ps, e_info, cs) # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap = (AP_WildCard (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), (var_env, array_patterns, { ps & ps_var_heap = ps_var_heap }, e_info, cs)) check_field_pattern p_input {bind_src,bind_dst} (var_env, array_patterns, ps, e_info, cs) # (pattern, (var_env, array_patterns), ps, e_info, cs) = checkPattern bind_src No p_input (var_env, array_patterns) ps e_info cs = (pattern, (var_env, array_patterns, ps, e_info, cs)) add_bound_variable (AP_Algebraic symbol index patterns No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Algebraic symbol index patterns (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable (AP_Basic bas_val No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Basic bas_val (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable (AP_NewType symbol index pattern No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_NewType symbol index pattern (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable (AP_Dynamic dynamic_pattern dynamic_type No) {bind_dst = {glob_object={fs_var}}} ps_var_heap # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps_var_heap = (AP_Dynamic dynamic_pattern dynamic_type (Yes { bind_src = fs_var, bind_dst = new_info_ptr}), ps_var_heap) add_bound_variable pattern _ ps_var_heap = (pattern, ps_var_heap) add_bound_variables [] _ var_heap = ([] , var_heap) add_bound_variables [ap : aps] [field : fields] var_heap # (ap, var_heap) = add_bound_variable ap field var_heap (aps, var_heap) = add_bound_variables aps fields var_heap = ([ap : aps], var_heap) bind_opt_record_variable (Yes {bind_dst}) False patterns fields var_heap # (patterns, var_heap) = add_bound_variables patterns fields var_heap = (patterns, var_heap <:= (bind_dst, VI_Record patterns)) bind_opt_record_variable no is_node_pattern patterns _ var_heap = (patterns, var_heap) checkPattern (PE_Bound bind) opt_var p_input accus ps e_info cs = checkBoundPattern bind opt_var p_input accus ps e_info cs checkPattern (PE_Ident id) opt_var p_input accus ps e_info cs = checkIdentPattern cIsNotInExpressionList id opt_var p_input accus ps e_info cs checkPattern (PE_QualifiedIdent module_id ident_name) opt_var p_input accus ps e_info cs = checkQualifiedIdentPattern cIsNotInExpressionList module_id ident_name opt_var p_input accus ps e_info cs checkPattern PE_WildCard opt_var p_input accus ps e_info cs = (AP_WildCard No, accus, ps, e_info, cs) checkPattern (PE_ArrayPattern selections) opt_var p_input (var_env, array_patterns) ps e_info cs # (var_env, ap_selections, ps_var_heap, cs) = foldSt (check_array_selection p_input.pi_def_level) selections (var_env, [], ps.ps_var_heap, cs) array_var_ident = case opt_var of Yes {bind_src} -> bind_src No -> { id_name = "_a", id_info = nilPtr } (array_var, ps_var_heap) = allocate_free_var array_var_ident ps_var_heap = (AP_Variable array_var_ident array_var.fv_info_ptr No, (var_env, [{ ap_opt_var = opt_var, ap_array_var = array_var, ap_selections = ap_selections } :array_patterns]), { ps & ps_var_heap = ps_var_heap }, e_info, cs) where check_array_selection def_level bind=:{bind_dst} states = check_rhs def_level bind (foldSt check_index_expr bind_dst states) check_index_expr (PE_Ident {id_name}) states | isLowerCaseName id_name = states // further with next alternative check_index_expr (PE_Basic (BVI _)) states = states check_index_expr (PE_Basic (BVInt _)) states = states check_index_expr _ (var_env, ap_selections, var_heap, cs) = (var_env, ap_selections, var_heap, { cs & cs_error = checkError "variable or integer constant expected as index expression" "" cs.cs_error }) check_rhs def_level {bind_src=PE_Ident ident, bind_dst} (var_env, ap_selections, var_heap, cs) | isLowerCaseName ident.id_name # (entry,cs_symbol_table) = readPtr ident.id_info cs.cs_symbol_table # (rhs_var, var_heap) = allocate_free_var ident var_heap cs = checkPatternVariable def_level entry ident rhs_var.fv_info_ptr { cs & cs_symbol_table = cs_symbol_table } = ([ident : var_env], [ { bind_src = rhs_var, bind_dst = bind_dst } : ap_selections], var_heap, cs) // further with next alternative check_rhs _ _ (var_env, ap_selections, var_heap, cs) = (var_env, ap_selections, var_heap, { cs & cs_error = checkError "variable expected on right hand side of array pattern" "" cs.cs_error }) checkPattern expr opt_var p_input accus ps e_info cs = abort "checkPattern: do not know how to handle pattern" ---> expr checkMacroPatternConstructor macro=:{fun_ident,fun_arity,fun_kind,fun_priority} macro_mod_index mod_index is_dcl_macro is_expr_list ste_index ident opt_var ps e_info cs=:{cs_error} | case fun_kind of FK_Macro->True; _ -> False | is_expr_list # macro_symbol = { glob_object = MakeDefinedSymbol fun_ident ste_index fun_arity, glob_module = macro_mod_index } = (AP_Constant (APK_Macro is_dcl_macro) macro_symbol fun_priority, ps, e_info, cs) | fun_arity == 0 # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro macro mod_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) = (AP_Empty, ps, e_info, { cs & cs_error = checkError ident "not defined" cs_error }) = (AP_Empty, ps, e_info, { cs & cs_error = checkError fun_ident "not allowed in a pattern" cs_error }) checkQualifiedMacroPatternConstructor macro=:{fun_ident,fun_arity,fun_kind,fun_priority} macro_mod_index mod_index is_dcl_macro is_expr_list ste_index module_name ident_name opt_var ps e_info cs=:{cs_error} | case fun_kind of FK_Macro->True; _ -> False | is_expr_list # macro_symbol = { glob_object = MakeDefinedSymbol fun_ident ste_index fun_arity, glob_module = macro_mod_index } = (AP_Constant (APK_Macro is_dcl_macro) macro_symbol fun_priority, ps, e_info, cs) | fun_arity == 0 # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro macro mod_index [] opt_var ps e_info.ef_modules e_info.ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) # name="'"+++module_name+++"'."+++ident_name = (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not defined" cs_error }) # name="'"+++module_name+++"'."+++ident_name = (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not allowed in a pattern" cs_error }) checkPatternConstructor :: !Index !Bool !SymbolTableEntry !Ident !(Optional (Bind Ident VarInfoPtr)) !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, !*PatternState,!*ExpressionInfo,!*CheckState); checkPatternConstructor _ _ {ste_kind = STE_Empty} ident _ ps e_info cs=:{cs_error} = (AP_Empty, ps, e_info, { cs & cs_error = checkError ident "not defined" cs_error }) checkPatternConstructor mod_index is_expr_list {ste_kind = STE_FunctionOrMacro _,ste_index} ident opt_var ps e_info cs=:{cs_x} # (macro,ps) = ps!ps_fun_defs.[ste_index] = checkMacroPatternConstructor macro cs_x.x_main_dcl_module_n mod_index False is_expr_list ste_index ident opt_var ps e_info cs checkPatternConstructor mod_index is_expr_list {ste_kind = STE_DclMacroOrLocalMacroFunction _,ste_index} ident opt_var ps e_info cs=:{cs_x} # (macro,e_info) = e_info!ef_macro_defs.[mod_index,ste_index] = checkMacroPatternConstructor macro mod_index mod_index True is_expr_list ste_index ident opt_var ps e_info cs checkPatternConstructor mod_index is_expr_list {ste_kind = STE_Imported (STE_DclMacroOrLocalMacroFunction _) macro_module_index,ste_index} ident opt_var ps e_info cs # (macro,e_info) = e_info!ef_macro_defs.[macro_module_index,ste_index] = checkMacroPatternConstructor macro macro_module_index mod_index True is_expr_list ste_index ident opt_var ps e_info cs checkPatternConstructor mod_index is_expr_list {ste_index, ste_kind} cons_ident opt_var ps e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error} # (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, cons_number, ef_cons_defs, ef_modules, cs_error) = determine_pattern_symbol mod_index ste_index ste_kind cons_ident.id_name ef_cons_defs ef_modules cs_error e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules } cons_symbol = { glob_object = MakeDefinedSymbol cons_ident cons_index cons_arity, glob_module = cons_module } | cons_number > -2 # global_type_index = {gi_module = cons_module, gi_index = cons_type_index} | is_expr_list = (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) | cons_arity == 0 = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError cons_ident "constructor arguments are missing" cs_error = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs) | cons_number == -2 | is_expr_list = (AP_Constant (APK_NewTypeConstructor cons_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError cons_ident "constructor argument is missing" cs_error = (AP_NewType cons_symbol cons_type_index AP_Empty opt_var, ps, e_info, cs) // cons_number == -3 # (type_rhs,e_info) = case ste_kind of STE_Constructor -> e_info!ef_type_defs.[cons_type_index].td_rhs _ -> e_info!ef_modules.[cons_module].dcl_common.com_type_defs.[cons_type_index].td_rhs # (AlgConses _ global_type_index) = type_rhs | is_expr_list = (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) | cons_arity == 0 = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError cons_ident "constructor arguments are missing" cs_error = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs) where determine_pattern_symbol mod_index id_index STE_Constructor id_name cons_defs modules error # ({cons_type={st_arity},cons_priority,cons_type_index,cons_number}, cons_defs) = cons_defs![id_index] = (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error) determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) id_name cons_defs modules error # ({dcl_common},modules) = modules![import_mod_index] {cons_type={st_arity},cons_priority,cons_type_index,cons_number} = dcl_common.com_cons_defs.[id_index] = (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error) determine_pattern_symbol mod_index id_index id_kind id_name cons_defs modules error = (id_index, NoIndex, 0, NoPrio, NoIndex, NoIndex, cons_defs, modules, checkError id_name "constructor expected" error) checkQualifiedPatternConstructor :: !STE_Kind !Index !Ident !{#Char} !{#Char} !Index !Bool !(Optional (Bind Ident VarInfoPtr)) !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, !*PatternState, !*ExpressionInfo, !*CheckState); checkQualifiedPatternConstructor STE_Empty _ decl_ident module_name ident_name _ _ _ ps e_info cs=:{cs_error} # name="'"+++module_name+++"'."+++ident_name = (AP_Empty, ps, e_info, { cs & cs_error = checkError name "not defined" cs_error }) checkQualifiedPatternConstructor (STE_FunctionOrMacro _) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs=:{cs_x} # (macro,ps) = ps!ps_fun_defs.[ste_index] = checkQualifiedMacroPatternConstructor macro cs_x.x_main_dcl_module_n mod_index False is_expr_list ste_index module_name ident_name opt_var ps e_info cs checkQualifiedPatternConstructor (STE_DclMacroOrLocalMacroFunction _) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs=:{cs_x} # (macro,e_info) = e_info!ef_macro_defs.[mod_index,ste_index] = checkQualifiedMacroPatternConstructor macro mod_index mod_index True is_expr_list ste_index module_name ident_name opt_var ps e_info cs checkQualifiedPatternConstructor (STE_Imported (STE_DclMacroOrLocalMacroFunction _) macro_module_index) ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info cs # (macro,e_info) = e_info!ef_macro_defs.[macro_module_index,ste_index] = checkQualifiedMacroPatternConstructor macro macro_module_index mod_index True is_expr_list ste_index module_name ident_name opt_var ps e_info cs checkQualifiedPatternConstructor ste_kind ste_index decl_ident module_name ident_name mod_index is_expr_list opt_var ps e_info=:{ef_cons_defs,ef_modules} cs=:{cs_error} # (cons_index, cons_module, cons_arity, cons_priority, cons_type_index, cons_number, ef_cons_defs, ef_modules, cs_error) = determine_pattern_symbol mod_index ste_index ste_kind module_name ident_name ef_cons_defs ef_modules cs_error e_info = { e_info & ef_cons_defs = ef_cons_defs, ef_modules = ef_modules } cons_symbol = { glob_object = MakeDefinedSymbol decl_ident cons_index cons_arity, glob_module = cons_module } | cons_number > -2 # global_type_index = {gi_module = cons_module, gi_index = cons_type_index} | is_expr_list = (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) | cons_arity == 0 = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError ident_name "constructor arguments are missing" cs_error = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs) | cons_number == -2 | is_expr_list = (AP_Constant (APK_NewTypeConstructor cons_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError ident_name "constructor argument is missing" cs_error = (AP_NewType cons_symbol cons_type_index AP_Empty opt_var, ps, e_info, cs) // cons_number == -3 # (type_rhs,e_info) = case ste_kind of STE_Constructor -> e_info!ef_type_defs.[cons_type_index].td_rhs _ -> e_info!ef_modules.[cons_module].dcl_common.com_type_defs.[cons_type_index].td_rhs # (AlgConses _ global_type_index) = type_rhs | is_expr_list = (AP_Constant (APK_Constructor global_type_index) cons_symbol cons_priority, ps, e_info, {cs & cs_error = cs_error}) | cons_arity == 0 = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, {cs & cs_error = cs_error}) # cs & cs_error = checkError ident_name "constructor arguments are missing" cs_error = (AP_Algebraic cons_symbol global_type_index [] opt_var, ps, e_info, cs) where determine_pattern_symbol mod_index id_index STE_Constructor module_name ident_name cons_defs modules error # ({cons_type={st_arity},cons_priority,cons_type_index,cons_number}, cons_defs) = cons_defs![id_index] = (id_index, mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error) determine_pattern_symbol mod_index id_index (STE_Imported STE_Constructor import_mod_index) module_name ident_name cons_defs modules error # ({dcl_common},modules) = modules![import_mod_index] {cons_type={st_arity},cons_priority,cons_type_index,cons_number} = dcl_common.com_cons_defs.[id_index] = (id_index, import_mod_index, st_arity, cons_priority, cons_type_index, cons_number, cons_defs, modules, error) determine_pattern_symbol mod_index id_index id_kind module_name ident_name cons_defs modules error = (id_index, NoIndex, 0, NoPrio, NoIndex, NoIndex, cons_defs, modules, checkError ("'"+++module_name+++"'."+++ident_name) "constructor expected" error) checkBoundPattern {bind_src,bind_dst} opt_var p_input (var_env, array_patterns) ps e_info cs=:{cs_symbol_table} | isLowerCaseName bind_dst.id_name # (entry, cs_symbol_table) = readPtr bind_dst.id_info cs_symbol_table # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable p_input.pi_def_level entry bind_dst new_info_ptr { cs & cs_symbol_table = cs_symbol_table } ps = { ps & ps_var_heap = ps_var_heap } new_var_env = [ bind_dst : var_env ] = case opt_var of Yes bind -> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input (new_var_env, array_patterns) ps e_info { cs & cs_error = checkError bind.bind_src "pattern may be bound once only" cs.cs_error } No -> checkPattern bind_src (Yes { bind_src = bind_dst, bind_dst = new_info_ptr }) p_input (new_var_env, array_patterns) ps e_info cs = checkPattern bind_src opt_var p_input (var_env, array_patterns) ps e_info { cs & cs_error = checkError bind_dst "variable expected" cs.cs_error } checkPatternVariable :: !Level !SymbolTableEntry !Ident !VarInfoPtr !*CheckState -> *CheckState checkPatternVariable def_level entry=:{ste_def_level,ste_kind} ident=:{id_info} var_info cs=:{cs_symbol_table,cs_error} | ste_kind == STE_Empty || def_level > ste_def_level # entry = {ste_kind = STE_Variable var_info, ste_index = NoIndex, ste_def_level = def_level, ste_previous = entry } = { cs & cs_symbol_table = cs_symbol_table <:= (id_info,entry)} = { cs & cs_error = checkError ident "(pattern variable) already defined" cs_error } checkIdentPattern :: !Bool !Ident !(Optional (Bind Ident VarInfoPtr)) !PatternInput !(![Ident], ![ArrayPattern]) !*PatternState !*ExpressionInfo !*CheckState -> (!AuxiliaryPattern, !(![Ident], ![ArrayPattern]), !*PatternState, !*ExpressionInfo, !*CheckState) checkIdentPattern is_expr_list id=:{id_name,id_info} opt_var {pi_def_level, pi_mod_index} accus=:(var_env, array_patterns) ps e_info cs=:{cs_symbol_table} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table | isLowerCaseName id_name # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable pi_def_level entry id new_info_ptr { cs & cs_symbol_table = cs_symbol_table } = (AP_Variable id new_info_ptr opt_var, ([ id : var_env ], array_patterns), { ps & ps_var_heap = ps_var_heap}, e_info, cs) # (pattern, ps, e_info, cs) = checkPatternConstructor pi_mod_index is_expr_list entry id opt_var ps e_info { cs & cs_symbol_table = cs_symbol_table } = (pattern, accus, ps, e_info, cs) checkQualifiedIdentPattern is_expr_list module_id ident_name opt_var {pi_mod_index} accus ps e_info cs # (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id ident_name ExpressionNameSpaceN cs | not found = (AP_Empty, accus, ps, e_info, cs) = case decl_kind of STE_Imported _ _ # (pattern, ps, e_info, cs) = checkQualifiedPatternConstructor decl_kind decl_index decl_ident module_id.id_name ident_name pi_mod_index is_expr_list opt_var ps e_info cs -> (pattern, accus, ps, e_info, cs) _ -> (AP_Empty, accus, ps, e_info, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++ident_name) "not imported" cs.cs_error }) convertSubPatterns :: [AuxiliaryPattern] Expression Position *VarHeap *ExpressionHeap u:[ExprInfoPtr] *CheckState -> *(!.[FreeVar],!Expression,!Position,!*VarHeap,!*ExpressionHeap,!u:[ExprInfoPtr],!*CheckState); convertSubPatterns [] result_expr pattern_position var_store expr_heap opt_dynamics cs = ([], result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) convertSubPatterns [pattern : patterns] result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns patterns result_expr pattern_position var_store expr_heap opt_dynamics cs (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs = ([var_arg : var_args], result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) convertSubPattern :: AuxiliaryPattern Expression Position *VarHeap *ExpressionHeap u:[ExprInfoPtr] *CheckState -> *(!FreeVar,!Expression,!Position,!*VarHeap,!*ExpressionHeap,!u:[ExprInfoPtr],!*CheckState); convertSubPattern (AP_Variable name var_info (Yes {bind_src,bind_dst})) result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (let_expr, expr_heap) = buildLetExpression [] [{lb_src = Var bound_var, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, lb_position = NoPos }] result_expr NoPos expr_heap = (free_var, let_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Variable name var_info No) result_expr pattern_position var_store expr_heap opt_dynamics cs = ({ fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0 }, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Algebraic cons_symbol global_type_index args opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_args, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPatterns args result_expr pattern_position var_store expr_heap opt_dynamics cs ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap # alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = var_args, ap_expr = result_expr, ap_position = pattern_position }] # (case_guards,expr_heap,cs) = make_case_guards cons_symbol global_type_index alg_patterns expr_heap cs = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr, case_explicit = cCaseNotExplicit, case_default_pos = NoPos }, NoPos, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Basic basic_val opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs # (basic_type, cs) = typeOfBasicValue basic_val cs case_guards = BasicPatterns basic_type [{ bp_value = basic_val, bp_expr = result_expr, bp_position = pattern_position }] ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr, case_explicit = cCaseNotExplicit, case_default_pos = NoPos}, NoPos, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_NewType cons_symbol type_index arg opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern arg result_expr pattern_position var_store expr_heap opt_dynamics cs type_symbol = { gi_module = cons_symbol.glob_module, gi_index = type_index } ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (case_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap # alg_patterns = [{ ap_symbol = cons_symbol, ap_vars = [var_arg], ap_expr = result_expr, ap_position = pattern_position }] # case_guards = NewTypePatterns type_symbol alg_patterns = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, Case { case_expr = Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }, case_guards = case_guards, case_default = No, case_ident = No, case_info_ptr = case_expr_ptr, case_explicit = cCaseNotExplicit, case_default_pos = NoPos }, NoPos, var_store, expr_heap, opt_dynamics, cs) convertSubPattern (AP_Dynamic pattern type opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs # (var_arg, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) = convertSubPattern pattern result_expr pattern_position var_store expr_heap opt_dynamics cs ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap (type_case_info_ptr, expr_heap) = newPtr EI_Empty expr_heap (dynamic_info_ptr, expr_heap) = newPtr (EI_DynamicType type opt_dynamics) expr_heap type_case_patterns = [{ dp_var = var_arg, dp_type = dynamic_info_ptr, dp_rhs = result_expr, dp_type_code = TCE_Empty, dp_position = pattern_position }] = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, buildTypeCase (Var { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr }) type_case_patterns No type_case_info_ptr cCaseNotExplicit, NoPos, var_store, expr_heap, [dynamic_info_ptr], cs) convertSubPattern (AP_WildCard opt_var) result_expr pattern_position var_store expr_heap opt_dynamics cs # ({bind_src,bind_dst}, var_store) = determinePatternVariable opt_var var_store = ({ fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 }, result_expr, pattern_position, var_store, expr_heap, opt_dynamics, cs) convertSubPattern AP_Empty result_expr pattern_position var_store expr_heap opt_dynamics cs = convertSubPattern (AP_WildCard No) EE pattern_position var_store expr_heap opt_dynamics cs checkAndTransformPatternIntoBind free_vars [{nd_dst,nd_alts,nd_locals,nd_position} : local_defs] e_input=:{ei_expr_level,ei_mod_index} e_state e_info cs # cs = pushErrorAdmin (newPosition {id_name="node definition", id_info=nilPtr} nd_position) cs # (bind_src, free_vars, e_state, e_info, cs) = checkRhs free_vars nd_alts nd_locals {e_input & ei_expr_level = ei_expr_level + 1} e_state e_info cs (binds_of_bind, es_var_heap, es_expr_heap, e_info, cs) = transfromPatternIntoBind ei_mod_index ei_expr_level nd_dst bind_src nd_position e_state.es_var_heap e_state.es_expr_heap e_info cs e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap } (binds_of_local_defs, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars local_defs e_input e_state e_info cs = (binds_of_bind ++ binds_of_local_defs, free_vars, e_state, e_info, popErrorAdmin cs) checkAndTransformPatternIntoBind free_vars [] e_input e_state e_info cs = ([], free_vars, e_state, e_info, cs) transfromPatternIntoBind :: !Index !Level !AuxiliaryPattern !Expression !Position !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState -> *(![LetBind], !*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState) transfromPatternIntoBind mod_index def_level (AP_Variable name var_info (Yes {bind_src,bind_dst})) src_expr position var_store expr_heap e_info cs # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = {var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr} free_var = {fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0} bind1 = {lb_src = src_expr, lb_dst = free_var, lb_position = position} bind2 = {lb_src = Var bound_var, lb_dst = {fv_ident = name, fv_info_ptr = var_info, fv_def_level = NotALevel, fv_count = 0}, lb_position = position} = ([bind1,bind2], var_store, expr_heap, e_info, cs) transfromPatternIntoBind mod_index def_level (AP_Variable name var_info No) src_expr position var_store expr_heap e_info cs # bind = {lb_src = src_expr, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }, lb_position = position } = ([bind], var_store, expr_heap, e_info, cs) transfromPatternIntoBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} global_type_index args opt_var) src_expr position var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs # (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr position var_store expr_heap | ds_arity == 0 = ([], var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident "constant not allowed in a node pattern" cs.cs_error}) # (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs | is_tuple # (tuple_var, tuple_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind position def_level var_store expr_heap = transform_sub_patterns mod_index def_level args ds_cons 0 tuple_var tuple_bind position var_store expr_heap e_info cs # ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index global_type_index ef_type_defs ef_modules e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules } = case td_rhs of RecordType {rt_fields} | size rt_fields == 1 -> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 src_expr opt_var_bind position var_store expr_heap e_info cs # (record_var, record_bind, var_store, expr_heap) = bind_match_expr src_expr opt_var_bind position def_level var_store expr_heap -> transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 record_var record_bind position var_store expr_heap e_info cs _ | ds_arity == 1 # (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr cons_symbol src_expr) position var_store expr_heap e_info cs -> (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs) # (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs # (src_expr,expr_heap,cs) = add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs # (match_var, match_bind, var_store, expr_heap) = bind_match_expr (MatchExpr cons_symbol src_expr) opt_var_bind position def_level var_store expr_heap -> transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind position var_store expr_heap e_info cs transfromPatternIntoBind mod_index def_level (AP_NewType cons_symbol type_index arg opt_var) src_expr position var_store expr_heap e_info cs # (src_expr, opt_var_bind, var_store, expr_heap) = bind_opt_var opt_var src_expr position var_store expr_heap # (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level arg (MatchExpr {cons_symbol & glob_object.ds_arity = -2} src_expr) position var_store expr_heap e_info cs = (opt_var_bind ++ binds, var_store, expr_heap, e_info, cs) transfromPatternIntoBind mod_index def_level (AP_WildCard _) src_expr _ var_store expr_heap e_info cs = ([], var_store, expr_heap, e_info, cs) transfromPatternIntoBind _ _ pattern src_expr _ var_store expr_heap e_info cs = ([], var_store, expr_heap, e_info, { cs & cs_error = checkError "" "illegal node pattern" cs.cs_error}) transfromPatternIntoStrictBind :: !Index !Level !AuxiliaryPattern !Expression !Position !*VarHeap !*ExpressionHeap !*ExpressionInfo !*CheckState -> *(![LetBind],![LetBind],!*VarHeap, !*ExpressionHeap, !*ExpressionInfo, !*CheckState) transfromPatternIntoStrictBind mod_index def_level (AP_Variable name var_info _) src_expr position var_store expr_heap e_info cs # bind = {lb_src = src_expr, lb_dst = { fv_ident = name, fv_info_ptr = var_info, fv_def_level = def_level, fv_count = 0 }, lb_position = position } = ([],[bind], var_store, expr_heap, e_info, cs) transfromPatternIntoStrictBind mod_index def_level (AP_Algebraic cons_symbol=:{glob_module,glob_object=ds_cons=:{ds_arity, ds_index, ds_ident}} global_type_index args opt_var) src_expr position var_store expr_heap e_info=:{ef_type_defs,ef_modules} cs # (src_expr, src_bind, var_store, expr_heap) = bind_opt_var_or_create_new_var opt_var src_expr position def_level var_store expr_heap | ds_arity == 0 = ([],[],var_store, expr_heap, e_info, { cs & cs_error = checkError ds_ident "constant not allowed in a node pattern" cs.cs_error}) # (is_tuple, cs) = is_tuple_symbol glob_module ds_index cs | is_tuple # (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns mod_index def_level args ds_cons 0 src_expr [] position var_store expr_heap e_info cs = (lazy_binds,src_bind,var_store,expr_heap,e_info,cs) # ({td_rhs}, ef_type_defs, ef_modules) = get_type_def mod_index global_type_index ef_type_defs ef_modules e_info = { e_info & ef_type_defs = ef_type_defs, ef_modules = ef_modules } = case td_rhs of RecordType {rt_fields} # (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns_of_record mod_index def_level args rt_fields glob_module 0 src_expr [] position var_store expr_heap e_info cs -> (lazy_binds,src_bind,var_store,expr_heap,e_info,cs) _ | ds_arity == 1 # (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level (hd args) (MatchExpr cons_symbol src_expr) position var_store expr_heap e_info cs -> (binds,src_bind, var_store, expr_heap, e_info, cs) # (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex ds_arity) PD_PredefinedModule STE_Constructor ds_arity cs # (src_expr,expr_heap,cs) = add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs # (match_var, match_bind, var_store, expr_heap) = bind_match_expr (MatchExpr cons_symbol src_expr) [] position def_level var_store expr_heap # (lazy_binds,var_store,expr_heap,e_info,cs) = transform_sub_patterns mod_index def_level args tuple_cons.glob_object 0 match_var match_bind position var_store expr_heap e_info cs -> (lazy_binds,src_bind,var_store,expr_heap,e_info,cs) transfromPatternIntoStrictBind mod_index def_level (AP_NewType cons_symbol type_index arg opt_var) src_expr position var_store expr_heap e_info cs # (src_expr, src_bind, var_store, expr_heap) = bind_opt_var_or_create_new_var opt_var src_expr position def_level var_store expr_heap # (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level arg (MatchExpr {cons_symbol & glob_object.ds_arity = -2} src_expr) position var_store expr_heap e_info cs = (binds,src_bind, var_store, expr_heap, e_info, cs) transfromPatternIntoStrictBind mod_index def_level (AP_WildCard _) src_expr _ var_store expr_heap e_info cs = ([],[],var_store, expr_heap, e_info, cs) transfromPatternIntoStrictBind _ _ pattern src_expr _ var_store expr_heap e_info cs = ([],[],var_store, expr_heap, e_info, { cs & cs_error = checkError "" "illegal node pattern" cs.cs_error}) get_type_def mod_index global_type_index=:{gi_module,gi_index} ef_type_defs ef_modules | mod_index == gi_module # (type_def, ef_type_defs) = ef_type_defs![gi_index] = (type_def, ef_type_defs, ef_modules) # ({dcl_common}, ef_modules) = ef_modules![gi_module] = (dcl_common.com_type_defs.[gi_index], ef_type_defs, ef_modules) is_tuple_symbol cons_module cons_index cs # (tuple_2_symbol, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs = (tuple_2_symbol.glob_module == cons_module && tuple_2_symbol.glob_object.ds_index <= cons_index && cons_index <= tuple_2_symbol.glob_object.ds_index + 30, cs) transform_sub_patterns mod_index def_level [pattern : patterns] tup_id tup_index arg_var all_binds position var_store expr_heap e_info cs # (this_arg_var, expr_heap) = adjust_match_expression arg_var expr_heap match_expr = TupleSelect tup_id tup_index this_arg_var (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level pattern match_expr position var_store expr_heap e_info cs = transform_sub_patterns mod_index def_level patterns tup_id (inc tup_index) arg_var (binds ++ all_binds) position var_store expr_heap e_info cs transform_sub_patterns mod_index _ [] _ _ _ binds _ var_store expr_heap e_info cs = (binds, var_store, expr_heap, e_info, cs) transform_sub_patterns_of_record mod_index def_level [pattern : patterns] fields field_module field_index record_expr all_binds position var_store expr_heap e_info cs # {fs_ident, fs_index} = fields.[field_index] selector = { glob_module = field_module, glob_object = MakeDefinedSymbol fs_ident fs_index 1} (this_record_expr, expr_heap) = adjust_match_expression record_expr expr_heap (binds, var_store, expr_heap, e_info, cs) = transfromPatternIntoBind mod_index def_level pattern (Selection NormalSelector this_record_expr [ RecordSelection selector field_index ]) position var_store expr_heap e_info cs = transform_sub_patterns_of_record mod_index def_level patterns fields field_module (inc field_index) record_expr (binds ++ all_binds) position var_store expr_heap e_info cs transform_sub_patterns_of_record mod_index _ [] _ _ _ _ binds _ var_store expr_heap e_info cs = (binds, var_store, expr_heap, e_info, cs) bind_opt_var (Yes {bind_src,bind_dst}) src_expr position var_heap expr_heap # free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } = (Var bound_var, [{lb_src = src_expr, lb_dst = free_var, lb_position = position}], var_heap <:= (bind_dst, VI_Empty), expr_heap) bind_opt_var No src_expr _ var_heap expr_heap = (src_expr, [], var_heap, expr_heap) bind_opt_var_or_create_new_var (Yes {bind_src,bind_dst}) src_expr position def_level var_heap expr_heap # free_var = { fv_ident = bind_src, fv_info_ptr = bind_dst, fv_def_level = NotALevel, fv_count = 0 } (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_ident = bind_src, var_info_ptr = bind_dst, var_expr_ptr = var_expr_ptr } = (Var bound_var, [{lb_dst = free_var, lb_src = src_expr, lb_position = position}], var_heap <:= (bind_dst, VI_Empty), expr_heap) bind_opt_var_or_create_new_var No src_expr position def_level var_heap expr_heap # new_name = newVarId "_x" (var_info_ptr, var_heap) = newPtr VI_Empty var_heap (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_ident = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = var_expr_ptr } free_var = { fv_ident = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 } = (Var bound_var, [{lb_dst = free_var, lb_src = src_expr, lb_position = position }], var_heap, expr_heap) bind_match_expr var_expr=:(Var var) opt_var_bind _ def_level var_heap expr_heap = (var_expr, opt_var_bind, var_heap, expr_heap) bind_match_expr match_expr opt_var_bind position def_level var_heap expr_heap # new_name = newVarId "_x" (var_info_ptr, var_heap) = newPtr VI_Empty var_heap // (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap bound_var = { var_ident = new_name, var_info_ptr = var_info_ptr, var_expr_ptr = nilPtr } free_var = { fv_ident = new_name, fv_info_ptr = var_info_ptr, fv_def_level = def_level, fv_count = 0 } = (Var bound_var, [{lb_src = match_expr, lb_dst = free_var, lb_position = position } : opt_var_bind], var_heap, expr_heap) adjust_match_expression (Var var) expr_heap # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Var { var & var_expr_ptr = var_expr_ptr }, expr_heap) adjust_match_expression match_expr expr_heap = (match_expr, expr_heap) add_decons_call_for_overloaded_lists glob_module ds_index src_expr expr_heap cs | glob_module==cPredefinedModuleIndex # pd_cons_index=ds_index+FirstConstructorPredefinedSymbolIndex | pd_cons_index==PD_UnboxedConsSymbol # (stdStrictLists_index,_,decons_u_index,_,decons_u_ident,cs) = get_unboxed_list_indices_and_decons_u_ident cs # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_u_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_u_index,glob_module=stdStrictLists_index}} # decons_u_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr} = (decons_u_expr,expr_heap,cs) | pd_cons_index==PD_UnboxedTailStrictConsSymbol # (stdStrictLists_index,_,decons_uts_index,_,decons_uts_ident,cs) = get_unboxed_tail_strict_list_indices_and_decons_uts_ident cs # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_uts_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_uts_index,glob_module=stdStrictLists_index}} # decons_uts_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr} = (decons_uts_expr,expr_heap,cs) | pd_cons_index==PD_OverloadedConsSymbol # (stdStrictLists_index,_,decons_index,_,decons_ident,cs) = get_overloaded_list_indices_and_decons_ident cs # (new_info_ptr,expr_heap) = newPtr EI_Empty expr_heap app_symb = {symb_ident=decons_ident,symb_kind=SK_OverloadedFunction {glob_object=decons_index,glob_module=stdStrictLists_index}} # decons_expr = App {app_symb=app_symb,app_args=[src_expr],app_info_ptr=new_info_ptr} = (decons_expr,expr_heap,cs) = (src_expr,expr_heap,cs) = (src_expr,expr_heap,cs) unfoldPatternMacro macro=:{fun_body=TransformedBody {tb_args,tb_rhs}} mod_index all_macro_args opt_var ps=:{ps_var_heap} modules cons_defs error | no_sharing tb_args # length_macro_args = length tb_args (macro_args, extra_args) = if (length all_macro_args==length_macro_args) (all_macro_args, []) (splitAt length_macro_args all_macro_args) ums = { ums_var_heap = fold2St bind_var tb_args macro_args ps_var_heap, ums_modules = modules, ums_cons_defs = cons_defs, ums_error = error } (pattern, {ums_var_heap,ums_modules,ums_cons_defs,ums_error}) = unfold_pattern_macro mod_index macro.fun_ident opt_var extra_args tb_rhs ums = (pattern, { ps & ps_var_heap = ums_var_heap}, ums_modules, ums_cons_defs, ums_error) = (AP_Empty, { ps & ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_ident "sharing not allowed" error) where no_sharing [{fv_count} : args] = fv_count <= 1 && no_sharing args no_sharing [] = True bind_var {fv_info_ptr} pattern ps_var_heap = ps_var_heap <:= (fv_info_ptr, VI_Pattern pattern) unfold_pattern_macro mod_index macro_ident _ extra_args (Var {var_ident,var_info_ptr}) ums=:{ums_var_heap, ums_error} | not (isEmpty extra_args) = (AP_Empty, { ums & ums_error = checkError macro_ident "too many arguments for pattern macro" ums_error }) # (VI_Pattern pattern, ums_var_heap) = readPtr var_info_ptr ums_var_heap = (pattern, { ums & ums_var_heap = ums_var_heap}) unfold_pattern_macro mod_index macro_ident opt_var extra_args (App {app_symb={symb_kind=SK_Constructor {glob_module,glob_object},symb_ident},app_args}) ums=:{ums_cons_defs,ums_modules,ums_error} # (cons_def, cons_index, ums_cons_defs, ums_modules) = get_cons_def mod_index glob_module glob_object ums_cons_defs ums_modules | cons_def.cons_type.st_arity == length app_args+length extra_args # (patterns, ums) = mapSt (unfold_pattern_macro mod_index macro_ident No []) app_args { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules } cons_symbol = { glob_object = MakeDefinedSymbol symb_ident cons_index cons_def.cons_type.st_arity, glob_module = glob_module } global_type_index = {gi_module = glob_module, gi_index = cons_def.cons_type_index} = (AP_Algebraic cons_symbol global_type_index (patterns++extra_args) opt_var, ums) = (AP_Empty, { ums & ums_cons_defs = ums_cons_defs, ums_modules = ums_modules, ums_error = checkError cons_def.cons_ident "incorrect number of arguments" ums_error }) where get_cons_def mod_index cons_mod cons_index cons_defs modules | mod_index == cons_mod # (cons_def, cons_defs) = cons_defs![cons_index] = (cons_def, cons_index, cons_defs, modules) # ({dcl_common}, modules) = modules![cons_mod] cons_def = dcl_common.com_cons_defs.[cons_index] = (cons_def, cons_index, cons_defs, modules) unfold_pattern_macro mod_index macro_ident opt_var extra_args (BasicExpr bv) ums=:{ums_error} | not (isEmpty extra_args) = (AP_Empty, { ums & ums_error = checkError macro_ident "too many arguments for pattern macro" ums_error }) = (AP_Basic bv opt_var, ums) unfold_pattern_macro mod_index macro_ident opt_var _ expr ums=:{ums_error} = (AP_Empty, { ums & ums_error = checkError macro_ident "illegal rhs for a pattern macro" ums_error }) unfoldPatternMacro macro mod_index all_macro_args opt_var ps=:{ps_var_heap} modules cons_defs error = (AP_Empty, { ps & ps_var_heap = ps_var_heap}, modules, cons_defs, checkError macro.fun_ident "illegal macro in pattern" error) checkSelectors end_with_update free_vars [ selector : selectors ] e_input e_state e_info cs | isEmpty selectors # (selector, free_vars, e_state, e_info, cs) = check_selector end_with_update free_vars selector e_input e_state e_info cs = ([ selector ], free_vars, e_state, e_info, cs) # (selector, free_vars, e_state, e_info, cs) = check_selector cEndWithSelection free_vars selector e_input e_state e_info cs (selectors, free_vars, e_state, e_info, cs) = checkSelectors end_with_update free_vars selectors e_input e_state e_info cs = ([ selector : selectors ], free_vars, e_state, e_info, cs) where check_selector _ free_vars (PS_Record selector=:{id_info,id_name} opt_type) e_input=:{ei_mod_index} e_state e_info=:{ef_selector_defs, ef_modules} cs=:{cs_symbol_table} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table # selectors = retrieveSelectorIndexes ei_mod_index entry (field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs) = get_field_nr ei_mod_index opt_type selectors id_name ef_selector_defs ef_modules { cs & cs_symbol_table = cs_symbol_table } = (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state, {e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs) check_selector _ free_vars (PS_QualifiedRecord module_id field_name opt_type) e_input=:{ei_mod_index} e_state e_info cs=:{cs_symbol_table} # (entry, symbol_table) = readPtr module_id.id_info cs_symbol_table # cs = {cs & cs_symbol_table=symbol_table} = case entry.ste_kind of STE_ModuleQualifiedImports sorted_qualified_imports # selectors = retrieve_qualified_selector_indices field_name sorted_qualified_imports # {ef_selector_defs, ef_modules}=e_info (field_module, field_index, field_nr, ef_selector_defs, ef_modules, cs) = get_field_nr ei_mod_index opt_type selectors field_name ef_selector_defs ef_modules cs selector = {id_name=field_name,id_info=nilPtr} -> (RecordSelection { glob_object = MakeDefinedSymbol selector field_index 1, glob_module = field_module } field_nr, free_vars, e_state, {e_info & ef_selector_defs = ef_selector_defs, ef_modules = ef_modules }, cs) STE_ClosedModule -> not_imported_error cs STE_Module _ -> not_imported_error cs _ # selector = {id_name=field_name,id_info=nilPtr} -> (RecordSelection {glob_object = MakeDefinedSymbol selector NoIndex 1,glob_module = NoIndex} NoIndex, free_vars, e_state, e_info, {cs & cs_error = checkError module_id "not defined" cs.cs_error }) where not_imported_error cs # selector = {id_name=field_name,id_info=nilPtr} = (RecordSelection {glob_object = MakeDefinedSymbol selector NoIndex 1,glob_module = NoIndex} NoIndex, free_vars, e_state, e_info, {cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++field_name) "not imported" cs.cs_error }) check_selector end_with_update free_vars (PS_Array index_expr) e_input e_state e_info cs | end_with_update # (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArrayUpdateFun PD_StdArray STE_Member 3 cs = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs # (glob_select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs = checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs get_field_nr :: !Index !OptionalRecordName ![Global Index] !{#Char} !u:{#SelectorDef} !v:{# DclModule} !*CheckState -> (!Index, !Index, !Index, u:{#SelectorDef}, v:{#DclModule}, !*CheckState) get_field_nr mod_index _ [] id_name selector_defs modules cs=:{cs_error} = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name "selector not defined" cs_error }) get_field_nr mod_index (RecordNameIdent type_id=:{id_info}) selectors id_name selector_defs modules cs=:{cs_symbol_table,cs_error} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table # (type_index, type_module) = retrieveGlobalDefinition entry STE_Type mod_index | type_index <> NotFound # (selector_index, selector_offset, selector_defs, modules) = determine_selector mod_index type_module type_index selectors selector_defs modules | selector_offset <> NoIndex = (type_module, selector_index, selector_offset, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table }) = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table, cs_error = checkError id_name "selector not defined" cs_error }) = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_symbol_table = cs_symbol_table, cs_error = checkError type_id "type not defined" cs_error }) get_field_nr mod_index (RecordNameQualifiedIdent module_id record_name) selectors id_name selector_defs modules cs # (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id record_name TypeNameSpaceN cs | not found = (NoIndex, NoIndex, NoIndex, selector_defs, modules, cs) = case decl_kind of STE_Imported STE_Type type_mod_index # (selector_index, selector_offset, selector_defs, modules) = determine_selector mod_index type_mod_index decl_index selectors selector_defs modules | selector_offset <> NoIndex -> (type_mod_index, selector_index, selector_offset, selector_defs, modules, cs) -> (NoIndex, NoIndex, NoIndex, selector_defs, modules, {cs & cs_error = checkError id_name "selector not defined" cs.cs_error }) _ -> (NoIndex, NoIndex, NoIndex, selector_defs, modules, {cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++record_name) "type not defined" cs.cs_error} ) get_field_nr mod_index NoRecordName [{glob_object,glob_module}] id_name selector_defs modules cs | mod_index == glob_module # (selector_offset,selector_defs) = selector_defs![glob_object].sd_field_nr = (glob_module, glob_object, selector_offset, selector_defs, modules, cs) # (selector_offset,modules) = modules![glob_module].dcl_common.com_selector_defs.[glob_object].sd_field_nr = (glob_module, glob_object, selector_offset, selector_defs, modules, cs) get_field_nr mod_index NoRecordName _ id_name selector_defs modules cs=:{cs_error} = (NoIndex, NoIndex, NoIndex, selector_defs, modules, { cs & cs_error = checkError id_name "ambiguous selector specified" cs_error }) determine_selector :: !Index !Index !Index ![Global Index] !u:{# SelectorDef} !v:{# DclModule} -> (!Int, !Int, !u:{# SelectorDef}, !v:{# DclModule}) determine_selector mod_index type_mod_index type_index [] selector_defs modules = (NoIndex, NoIndex, selector_defs, modules) determine_selector mod_index type_mod_index type_index [{glob_module, glob_object} : selectors] selector_defs modules | type_mod_index == glob_module | type_mod_index == mod_index # (selector_def,selector_defs) = selector_defs![glob_object] | selector_def.sd_type_index == type_index = (glob_object, selector_def.sd_field_nr, selector_defs, modules) = determine_selector mod_index type_mod_index type_index selectors selector_defs modules # (selector_def, modules) = modules![glob_module].dcl_common.com_selector_defs.[glob_object] | selector_def.sd_type_index == type_index = (glob_object, selector_def.sd_field_nr, selector_defs, modules) = determine_selector mod_index type_mod_index type_index selectors selector_defs modules = determine_selector mod_index type_mod_index type_index selectors selector_defs modules checkArraySelection glob_select_symb free_vars index_expr e_input e_state e_info cs # (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars index_expr e_input e_state e_info cs (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap = (ArraySelection glob_select_symb new_info_ptr index_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs) checkFields :: !Index ![FieldAssignment] !OptionalRecordName !u:ExpressionInfo !*CheckState -> (!Optional ((Global DefinedSymbol), Index, [Bind ParsedExpr (Global FieldSymbol)]), !u:ExpressionInfo, !*CheckState) checkFields mod_index field_ass opt_type e_info=:{ef_selector_defs,ef_type_defs,ef_modules} cs # (ok, field_ass, cs) = check_fields field_ass cs | ok # (opt_type_def, ef_selector_defs, ef_type_defs, ef_modules, cs) = determine_record_type mod_index opt_type field_ass ef_selector_defs ef_type_defs ef_modules cs e_info = { e_info & ef_selector_defs = ef_selector_defs, ef_type_defs = ef_type_defs, ef_modules = ef_modules} = case opt_type_def of Yes ({td_index,td_rhs = RecordType {rt_constructor,rt_fields}}, type_mod_index) # (field_exprs, cs_error) = check_and_rearrange_fields type_mod_index 0 rt_fields field_ass cs.cs_error #! cons_symbol = {glob_object = rt_constructor, glob_module = type_mod_index} -> (Yes (cons_symbol, td_index, field_exprs), e_info, {cs & cs_error = cs_error}) Yes _ # (RecordNameIdent type_ident) = opt_type -> (No, e_info, { cs & cs_error = checkError type_ident "not a record constructor" cs.cs_error }) No -> (No, e_info, cs) = (No, e_info, cs) where check_fields [ bind=:{bind_dst=bind_dst=:FieldName field_ident} : field_ass ] cs=:{cs_symbol_table,cs_error} # (entry, cs_symbol_table) = readPtr field_ident.id_info cs_symbol_table # fields = retrieveSelectorIndexes mod_index entry | isEmpty fields = (False, [], { cs & cs_symbol_table = cs_symbol_table, cs_error = checkError field_ident "not defined as a record field" cs_error }) # (ok, field_ass, cs) = check_fields field_ass { cs & cs_symbol_table = cs_symbol_table } = (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs) check_fields [ bind=:{bind_dst=bind_dst=:QualifiedFieldName module_id field_name} : field_ass ] cs=:{cs_symbol_table} # (entry, symbol_table) = readPtr module_id.id_info cs_symbol_table # cs = {cs & cs_symbol_table=symbol_table} = case entry.ste_kind of STE_ModuleQualifiedImports sorted_qualified_imports # fields = retrieve_qualified_selector_indices field_name sorted_qualified_imports | isEmpty fields -> not_imported_error cs # (ok, field_ass, cs) = check_fields field_ass cs -> (ok, [{bind & bind_dst = (bind_dst, fields)} : field_ass], cs) STE_ClosedModule -> not_imported_error cs STE_Module _ -> not_imported_error cs _ -> (False, [], { cs & cs_error = checkError module_id "not defined" cs.cs_error }) where not_imported_error cs = (False, [], { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++field_name) "not defined as a record field" cs.cs_error }) check_fields [] cs = (True, [], cs) try_to_get_unique_field [] = No try_to_get_unique_field [ {bind_dst = (field_id, [field])} : fields ] = Yes field try_to_get_unique_field [ _ : fields ] = try_to_get_unique_field fields determine_record_type mod_index (RecordNameIdent type_id=:{id_info}) _ selector_defs type_defs modules cs=:{cs_symbol_table, cs_error} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table # (type_index, type_mod_index) = retrieveGlobalDefinition entry STE_Type mod_index | type_index <> NotFound | mod_index == type_mod_index # (type_def, type_defs) = type_defs![type_index] = (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, { cs & cs_symbol_table = cs_symbol_table }) # (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[type_index] = (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, { cs & cs_symbol_table = cs_symbol_table }) = (No, selector_defs, type_defs, modules, { cs & cs_error = checkError type_id "not defined" cs_error, cs_symbol_table = cs_symbol_table}) determine_record_type mod_index (RecordNameQualifiedIdent module_id record_name) _ selector_defs type_defs modules cs # (found,{decl_kind,decl_ident,decl_index},cs) = search_qualified_ident module_id record_name TypeNameSpaceN cs | not found = (No, selector_defs, type_defs, modules, cs) = case decl_kind of STE_Imported STE_Type type_mod_index | type_mod_index==mod_index # (type_def, type_defs) = type_defs![decl_index] -> (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs) # (type_def, modules) = modules![type_mod_index].dcl_common.com_type_defs.[decl_index] -> (Yes (type_def, type_mod_index), selector_defs, type_defs, modules, cs) _ -> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError ("'"+++module_id.id_name+++"'."+++record_name) "not imported" cs.cs_error }) determine_record_type mod_index NoRecordName fields selector_defs type_defs modules cs=:{cs_error} # succ = try_to_get_unique_field fields = case succ of Yes {glob_module, glob_object} | glob_module == mod_index # (selector_def, selector_defs) = selector_defs![glob_object] (type_def, type_defs) = type_defs![selector_def.sd_type_index] -> (Yes (type_def, glob_module), selector_defs, type_defs, modules, cs) # ({dcl_common={com_selector_defs,com_type_defs}}, modules) = modules![glob_module] {sd_type_index} = com_selector_defs.[glob_object] type_def = com_type_defs.[sd_type_index] -> (Yes (type_def,glob_module), selector_defs, type_defs, modules, cs) No -> (No, selector_defs, type_defs, modules, { cs & cs_error = checkError "could not determine the type of this record" "" cs.cs_error }) check_and_rearrange_fields :: !Int !Int !{#FieldSymbol} ![Bind ParsedExpr (FieldNameOrQualifiedFieldName,[Global .Int])] !*ErrorAdmin -> (![Bind ParsedExpr .(Global FieldSymbol)],!.ErrorAdmin); check_and_rearrange_fields mod_index field_index fields field_ass cs_error | field_index < size fields # (field_expr, field_ass) = look_up_field mod_index fields.[field_index] field_ass (field_exprs, cs_error) = check_and_rearrange_fields mod_index (inc field_index) fields field_ass cs_error = ([field_expr : field_exprs], cs_error) | isEmpty field_ass = ([], cs_error) = ([], foldSt field_error field_ass cs_error) where look_up_field mod_index field [] = ({bind_src = PE_WildCard, bind_dst = { glob_object = field, glob_module = mod_index }}, []) look_up_field mod_index field=:{fs_index} [ass=:{bind_src, bind_dst = (_, fields)} : field_ass] | field_list_contains_field mod_index fs_index fields = ({bind_src = bind_src, bind_dst = { glob_module = mod_index, glob_object = field}}, field_ass) # (field_expr, field_ass) = look_up_field mod_index field field_ass = (field_expr, [ass : field_ass]) field_list_contains_field mod_index fs_index [] = False field_list_contains_field mod_index fs_index [{glob_object,glob_module} : fields] = mod_index == glob_module && fs_index == glob_object || field_list_contains_field mod_index fs_index fields field_error {bind_dst=(field_id,_)} error = checkError field_id "field is either multiply used or not a part of this record" error checkRhssAndTransformLocalDefs free_vars [] rhs_expr e_input e_state e_info cs = (rhs_expr, free_vars, e_state, e_info, cs) checkRhssAndTransformLocalDefs free_vars loc_defs rhs_expr e_input e_state e_info cs # (binds, free_vars, e_state, e_info, cs) = checkAndTransformPatternIntoBind free_vars loc_defs e_input e_state e_info cs (rhs_expr, es_expr_heap) = buildLetExpression [] binds rhs_expr NoPos e_state.es_expr_heap = (rhs_expr, free_vars, { e_state & es_expr_heap = es_expr_heap }, e_info, cs) checkLhssOfLocalDefs :: .Int .Int LocalDefs Int *ExpressionState *ExpressionInfo *CheckState -> (!.[NodeDef AuxiliaryPattern],!(![Ident],![ArrayPattern]),!.ExpressionState,!.ExpressionInfo,!.CheckState); checkLhssOfLocalDefs def_level mod_index (CollectedLocalDefs {loc_functions={ir_from,ir_to},loc_nodes,loc_in_icl_module}) local_functions_index_offset e_state=:{es_var_heap,es_fun_defs} e_info=:{ef_is_macro_fun} cs # ir_from=ir_from+local_functions_index_offset # ir_to=ir_to+local_functions_index_offset # (loc_defs, accus, {ps_fun_defs,ps_var_heap}, e_info, cs) = check_patterns loc_nodes {pi_def_level = def_level, pi_mod_index = mod_index, pi_is_node_pattern = True } ([], []) {ps_fun_defs = es_fun_defs, ps_var_heap = es_var_heap} e_info cs | loc_in_icl_module # (fun_defs, cs_symbol_table, cs_error) = addLocalFunctionDefsToSymbolTable def_level ir_from ir_to ef_is_macro_fun ps_fun_defs cs.cs_symbol_table cs.cs_error = (loc_defs, accus, { e_state & es_fun_defs = fun_defs, es_var_heap = ps_var_heap }, e_info, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }) # (macro_defs, cs_symbol_table, cs_error) = addLocalDclMacroDefsToSymbolTable def_level mod_index ir_from ir_to e_info.ef_macro_defs cs.cs_symbol_table cs.cs_error = (loc_defs, accus, { e_state & es_fun_defs = ps_fun_defs, es_var_heap = ps_var_heap }, {e_info & ef_macro_defs=macro_defs}, { cs & cs_symbol_table = cs_symbol_table, cs_error = cs_error }) where check_patterns [ node_def : node_defs ] p_input accus var_store e_info cs # (pattern, accus, var_store, e_info, cs) = check_local_lhs_pattern node_def.nd_dst No p_input accus var_store e_info cs (patterns, accus, var_store, e_info, cs) = check_patterns node_defs p_input accus var_store e_info cs = ([{ node_def & nd_dst = pattern } : patterns], accus, var_store, e_info, cs) check_patterns [] p_input accus var_store e_info cs = ([], accus, var_store, e_info, cs) /* RWS: FIXME This is a patch for the case ... where X = 10 in which X should be a node-id (a.k.a. AP_Variable) and not a pattern. I think the distinction between node-ids and constructors should be done in an earlier phase, but this will need a larger rewrite. */ check_local_lhs_pattern (PE_Ident id=:{id_name, id_info}) opt_var {pi_def_level, pi_mod_index} accus=:(var_env, array_patterns) ps e_info cs=:{cs_symbol_table} # (entry, cs_symbol_table) = readPtr id_info cs_symbol_table # (new_info_ptr, ps_var_heap) = newPtr VI_Empty ps.ps_var_heap cs = checkPatternVariable pi_def_level entry id new_info_ptr { cs & cs_symbol_table = cs_symbol_table } = (AP_Variable id new_info_ptr opt_var, ([ id : var_env ], array_patterns), { ps & ps_var_heap = ps_var_heap}, e_info, cs) check_local_lhs_pattern pattern opt_var p_input accus var_store e_info cs = checkPattern pattern opt_var p_input accus var_store e_info cs addArraySelections [] rhs_expr free_vars e_input e_state e_info cs = (rhs_expr, free_vars, e_state, e_info, cs) addArraySelections array_patterns rhs_expr free_vars e_input e_state e_info cs # (let_strict_binds, let_lazy_binds, free_vars, e_state, e_info, cs) = buildArraySelections e_input array_patterns free_vars e_state e_info cs (let_expr_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap = ( Let {let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = rhs_expr, let_info_ptr = let_expr_ptr, let_expr_position = NoPos } , free_vars , { e_state & es_expr_heap = es_expr_heap} , e_info, cs ) buildArraySelections e_input array_patterns free_vars e_state e_info cs = foldSt (buildSelections e_input) array_patterns ([], [], free_vars, e_state, e_info, cs) buildSelections e_input {ap_selections=[]} (strict_binds, lazy_binds, free_vars, e_state, e_info, cs) = (strict_binds, lazy_binds, free_vars, e_state, e_info, cs) // if an error occurs in checkPattern buildSelections e_input {ap_opt_var, ap_array_var, ap_selections} (strict_binds, lazy_binds, free_vars, e_state, e_info, cs) # (ap_array_var, [last_array_selection:lazy_binds], free_vars, e_state, e_info, cs) = foldSt (build_sc e_input) (reverse ap_selections) // reverse to make cycle-in-spine behaviour compatible to Clean 1.3 (ap_array_var, lazy_binds, free_vars, e_state, e_info, cs) (lazy_binds, e_state) = case ap_opt_var of Yes { bind_src = opt_var_ident, bind_dst = opt_var_var_info_ptr } # (bound_array_var, es_expr_heap) = allocate_bound_var ap_array_var e_state.es_expr_heap free_var = { fv_ident = opt_var_ident, fv_info_ptr = opt_var_var_info_ptr, fv_def_level = NotALevel, fv_count = 0 } -> ([{ lb_dst = free_var, lb_src = Var bound_array_var, lb_position = NoPos }: lazy_binds], { e_state & es_expr_heap = es_expr_heap }) no -> (lazy_binds, e_state) = ([last_array_selection:strict_binds], lazy_binds, free_vars, e_state, e_info, cs) where build_sc e_input {bind_dst=parsed_index_exprs, bind_src=array_element_var} (ap_array_var, binds, free_vars, e_state, e_info, cs) # (var_for_uselect_result, es_var_heap) = allocate_free_var { id_name = "_x", id_info = nilPtr } e_state.es_var_heap (new_array_var, es_var_heap) = allocate_free_var ap_array_var.fv_ident es_var_heap (bound_array_var, es_expr_heap) = allocate_bound_var ap_array_var e_state.es_expr_heap (bound_var_for_uselect_result, es_expr_heap) = allocate_bound_var var_for_uselect_result es_expr_heap dimension = length parsed_index_exprs (new_expr_ptrs, es_expr_heap) = mapSt newPtr (repeatn dimension EI_Empty) es_expr_heap (tuple_cons, cs) = getPredefinedGlobalSymbol (GetTupleConsIndex 2) PD_PredefinedModule STE_Constructor 2 cs (glob_select_symb, selector_kind, cs) = case dimension of 1 # (unq_select_symb, cs) = getPredefinedGlobalSymbol PD_UnqArraySelectFun PD_StdArray STE_Member 2 cs -> (unq_select_symb, UniqueSingleArraySelector, cs) _ # (select_symb, cs) = getPredefinedGlobalSymbol PD_ArraySelectFun PD_StdArray STE_Member 2 cs -> (select_symb, UniqueSelector, cs) e_state = { e_state & es_var_heap = es_var_heap, es_expr_heap = es_expr_heap } (index_exprs, (free_vars, e_state, e_info, cs)) = mapSt (check_index_expr e_input) parsed_index_exprs (free_vars, e_state, e_info, cs) selections = [ ArraySelection glob_select_symb new_expr_ptr index_expr \\ new_expr_ptr<-new_expr_ptrs & index_expr<-index_exprs ] = ( new_array_var , [ {lb_dst = var_for_uselect_result, lb_src = Selection selector_kind (Var bound_array_var) selections, lb_position = NoPos } , {lb_dst = new_array_var, lb_src = TupleSelect tuple_cons.glob_object 1 (Var bound_var_for_uselect_result), lb_position = NoPos } , {lb_dst = array_element_var, lb_src = TupleSelect tuple_cons.glob_object 0 (Var bound_var_for_uselect_result), lb_position = NoPos } : binds ] , free_vars, e_state, e_info , cs) check_index_expr e_input parsed_index_expr (free_vars, e_state, e_info, cs) # (index_expr, free_vars, e_state, e_info, cs) = checkExpression free_vars parsed_index_expr e_input e_state e_info cs = (index_expr, (free_vars, e_state, e_info, cs)) buildLetExpression :: ![LetBind] ![LetBind] !Expression !Position !*ExpressionHeap -> (!Expression, !*ExpressionHeap) buildLetExpression [] [] expr _ expr_heap = (expr, expr_heap) buildLetExpression let_strict_binds let_lazy_binds expr let_expr_position expr_heap # (let_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = (Let {let_strict_binds = let_strict_binds, let_lazy_binds = let_lazy_binds, let_expr = expr, let_info_ptr = let_expr_ptr, let_expr_position = let_expr_position }, expr_heap) buildApplication :: !SymbIdent !Int !Int ![Expression] !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin) buildApplication symbol=:{symb_kind=SK_Constructor _} form_arity act_arity args e_state error # app = App { app_symb = symbol , app_args = args, app_info_ptr = nilPtr } | act_arity > form_arity = (app, e_state, checkError symbol.symb_ident "used with too many arguments" error) = (app, e_state, error) buildApplication symbol=:{symb_kind=SK_OverloadedConstructor cons_index} form_arity act_arity args e_state error # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap e_state = {e_state & es_expr_heap=es_expr_heap} app = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = args, app_info_ptr = new_info_ptr} | act_arity > form_arity = (app, e_state, checkError symbol.symb_ident "used with too many arguments" error) = (app, e_state, error) buildApplication symbol=:{symb_kind=SK_NewTypeConstructor _} form_arity act_arity args e_state error # app = App { app_symb = symbol , app_args = args, app_info_ptr = nilPtr } | act_arity == form_arity = (app, e_state, error) | act_arity > form_arity = (app, e_state, checkError symbol.symb_ident "used with too many arguments" error) = (app, e_state, checkError symbol.symb_ident "argument missing (for newtype constructor)" error) buildApplication symbol form_arity act_arity args e_state=:{es_expr_heap} error # (new_info_ptr, es_expr_heap) = newPtr EI_Empty es_expr_heap | form_arity < act_arity # app = { app_symb = symbol , app_args = take form_arity args, app_info_ptr = new_info_ptr } = (App app @ drop form_arity args, { e_state & es_expr_heap = es_expr_heap }, error) # app = { app_symb = symbol , app_args = take form_arity args, app_info_ptr = new_info_ptr } = (App app, { e_state & es_expr_heap = es_expr_heap }, error) buildApplicationWithoutArguments :: !SymbIdent !*ExpressionState !*ErrorAdmin -> (!Expression,!*ExpressionState,!*ErrorAdmin) buildApplicationWithoutArguments symbol=:{symb_kind=SK_Constructor _} e_state error # app = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr } = (app, e_state, error) buildApplicationWithoutArguments symbol=:{symb_kind=SK_OverloadedConstructor cons_index} e_state error # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap app = App {app_symb = {symbol & symb_kind=SK_Constructor cons_index}, app_args = [], app_info_ptr = new_info_ptr} = (app, {e_state & es_expr_heap = es_expr_heap}, error) buildApplicationWithoutArguments symbol=:{symb_kind=SK_NewTypeConstructor _} e_state error # app = App { app_symb = symbol , app_args = [], app_info_ptr = nilPtr } = (app, e_state, checkError symbol.symb_ident "argument missing (for newtype constructor)" error) buildApplicationWithoutArguments symbol e_state error # (new_info_ptr, es_expr_heap) = newPtr EI_Empty e_state.es_expr_heap # app = App { app_symb = symbol , app_args = [], app_info_ptr = new_info_ptr } = (app, { e_state & es_expr_heap = es_expr_heap }, error) buildPattern mod_index (APK_Constructor type_index) cons_ident args opt_var ps e_info cs = (AP_Algebraic cons_ident type_index args opt_var, ps, e_info, cs) buildPattern mod_index (APK_NewTypeConstructor type_index) cons_ident [arg] opt_var ps e_info cs = (AP_NewType cons_ident type_index arg opt_var, ps, e_info, cs) buildPattern mod_index (APK_Macro is_dcl_macro) {glob_module,glob_object} args opt_var ps e_info=:{ef_modules,ef_macro_defs,ef_cons_defs} cs=:{cs_error} | is_dcl_macro # (macro,ef_macro_defs) = ef_macro_defs![glob_module,glob_object.ds_index] # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro macro mod_index args opt_var ps ef_modules ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_macro_defs=ef_macro_defs, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) # (macro,ps) = ps!ps_fun_defs.[glob_object.ds_index] # (pattern, ps, ef_modules, ef_cons_defs, cs_error) = unfoldPatternMacro macro mod_index args opt_var ps ef_modules ef_cons_defs cs_error = (pattern, ps, { e_info & ef_modules = ef_modules, ef_macro_defs=ef_macro_defs, ef_cons_defs = ef_cons_defs }, { cs & cs_error = cs_error }) getPredefinedGlobalSymbol :: !Index !Index !STE_Kind !Int !*CheckState -> (!Global DefinedSymbol, !*CheckState) getPredefinedGlobalSymbol symb_index module_index req_ste_kind arity cs=:{cs_predef_symbols,cs_symbol_table} # mod_id = predefined_idents.[module_index] # (mod_entry, cs_symbol_table) = readPtr mod_id.id_info cs_symbol_table | mod_entry.ste_kind == STE_ClosedModule # (glob_object, cs) = get_predefined_symbol symb_index req_ste_kind arity mod_entry.ste_index { cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table} = ({ glob_object = glob_object, glob_module = mod_entry.ste_index }, cs) = ({ glob_object = { ds_ident = { id_name = "** ERRONEOUS **", id_info = nilPtr }, ds_index = NoIndex, ds_arity = arity }, glob_module = NoIndex}, { cs & cs_error = checkError mod_id "not imported" cs.cs_error, cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table }) where get_predefined_symbol :: !Index !STE_Kind !Int !Index !*CheckState -> (!DefinedSymbol,!*CheckState) get_predefined_symbol symb_index req_ste_kind arity mod_index cs=:{cs_predef_symbols,cs_symbol_table,cs_error} # symb_id = predefined_idents.[symb_index] (symb_entry, cs_symbol_table) = readPtr symb_id.id_info cs_symbol_table cs = { cs & cs_predef_symbols = cs_predef_symbols, cs_symbol_table = cs_symbol_table } | symb_entry.ste_kind == req_ste_kind = ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs) = case symb_entry.ste_kind of STE_Imported kind module_index | mod_index == module_index && kind == req_ste_kind -> ({ ds_ident = symb_id, ds_index = symb_entry.ste_index, ds_arity = arity }, cs) _ -> ({ ds_ident = symb_id, ds_index = NoIndex, ds_arity = arity }, { cs & cs_error = checkError symb_id "undefined" cs.cs_error }) typeOfBasicValue :: !BasicValue !*CheckState -> (!BasicType, !*CheckState) typeOfBasicValue (BVI _) cs = (BT_Int, cs) typeOfBasicValue (BVInt _) cs = (BT_Int, cs) typeOfBasicValue (BVC _) cs = (BT_Char, cs) typeOfBasicValue (BVB _) cs = (BT_Bool, cs) typeOfBasicValue (BVR _) cs = (BT_Real, cs) typeOfBasicValue (BVS _) cs # ({glob_module,glob_object={ds_ident,ds_index,ds_arity}}, cs) = getPredefinedGlobalSymbol PD_StringType PD_PredefinedModule STE_Type 0 cs = (BT_String (TA (MakeTypeSymbIdent { glob_object = ds_index, glob_module = glob_module } ds_ident ds_arity) []), cs) buildTypeCase type_case_dynamic type_case_patterns type_case_default type_case_info_ptr case_explicit :== Case { case_expr = type_case_dynamic, case_guards = DynamicPatterns type_case_patterns, case_default = type_case_default, case_info_ptr = type_case_info_ptr, case_ident = No, case_default_pos = NoPos, case_explicit = case_explicit } determinePatternVariable (Yes bind) var_heap = (bind, var_heap) determinePatternVariable No var_heap # (new_info_ptr, var_heap) = newPtr VI_Empty var_heap = ({ bind_src = newVarId "_x", bind_dst = new_info_ptr }, var_heap) pushErrorAdmin2 _ NoPos cs=:{cs_error={ea_loc=[top_of_stack:_]}} // there is no position info, push current position to balance pop calls = pushErrorAdmin top_of_stack cs pushErrorAdmin2 string pos=:(LinePos _ _) cs = pushErrorAdmin (newPosition {id_name=string, id_info=nilPtr} pos) cs allocate_bound_var :: !FreeVar !*ExpressionHeap -> (!BoundVar, !.ExpressionHeap) allocate_bound_var {fv_ident, fv_info_ptr} expr_heap # (var_expr_ptr, expr_heap) = newPtr EI_Empty expr_heap = ({ var_ident = fv_ident, var_info_ptr = fv_info_ptr, var_expr_ptr = var_expr_ptr }, expr_heap) allocate_free_var ident var_heap # (new_var_info_ptr, var_heap) = newPtr VI_Empty var_heap = ({ fv_def_level = NotALevel, fv_ident = ident, fv_info_ptr = new_var_info_ptr, fv_count = 0 }, var_heap) newVarId name = { id_name = name, id_info = nilPtr } retrieveSelectorIndexes :: Int !SymbolTableEntry -> [(Global Int)] retrieveSelectorIndexes mod_index {ste_kind = STE_Selector selector_list, ste_index, ste_previous } = map (adjust_mod_index mod_index) selector_list where adjust_mod_index mod_index selector=:{glob_module} | glob_module == NoIndex = {selector & glob_module = mod_index} = selector retrieveSelectorIndexes mod_index off_kind = [] retrieve_qualified_selector_indices field_name sorted_qualified_imports = [{glob_module=type_mod_index,glob_object=decl_index} \\ {decl_kind=STE_Imported (STE_Field selector) type_mod_index,decl_index} <- search_qualified_imports field_name sorted_qualified_imports FieldNameSpaceN] instance <<< FieldSymbol where (<<<) file { fs_var } = file <<< fs_var