implementation module generics import StdEnv import _aconcat import hashtable import checksupport import checktypes import check import analtypes /*2.0 from transform import ::Group 0.2*/ //1.3 from transform import Group //3.1 // whether to generate CONS // (needed for function that use CONS, like toString) supportCons :== False // whether to bind _cons_info to actual constructor info // (needed for functions that create CONS, like fromString) supportConsInfo :== True && supportCons // whether generate missing alternatives supportPartialInstances :== False :: *GenericState = { gs_modules :: !*{#CommonDefs} , gs_fun_defs :: !*{# FunDef} , gs_groups :: !{!Group} , gs_td_infos :: !*TypeDefInfos , gs_gtd_infos :: !*GenericTypeDefInfos , gs_heaps :: !*Heaps , gs_main_dcl_module_n :: !Index , gs_first_fun :: !Index , gs_last_fun :: !Index , gs_first_group :: !Index , gs_last_group :: !Index , gs_predefs :: !PredefinedSymbols , gs_dcl_modules :: !*{#DclModule} , gs_opt_dcl_icl_conversions :: !*(Optional !*{#Index}) , gs_error :: !*ErrorAdmin } :: GenericTypeDefInfo = GTDI_Empty // no generic rep needed | GTDI_Generic GenericTypeRep // generic representataion :: GenericTypeDefInfos :== {# .{GenericTypeDefInfo}} :: GenericTypeRep = { gtr_type :: !AType // generic type representation , gtr_type_args :: ![TypeVar] // same as in td_info , gtr_iso :: !DefinedSymbol // isomorphim function index , gtr_isomap_group :: !Index // isomap function group , gtr_isomap :: !DefinedSymbol // isomap function for the type , gtr_isomap_from :: !DefinedSymbol // from-part of isomap , gtr_isomap_to :: !DefinedSymbol // to-part , gtr_type_info :: !DefinedSymbol // type def info , gtr_cons_infos :: ![DefinedSymbol] // constructor informations } EmptyDefinedSymbol :== MakeDefinedSymbol {id_name="",id_info=nilPtr} NoIndex 0 EmptyGenericType :== { gtr_type = makeAType TE TA_None , gtr_type_args = [] , gtr_iso = EmptyDefinedSymbol , gtr_isomap_group = NoIndex , gtr_isomap = EmptyDefinedSymbol , gtr_isomap_from = EmptyDefinedSymbol , gtr_isomap_to = EmptyDefinedSymbol , gtr_type_info = EmptyDefinedSymbol , gtr_cons_infos = [] } :: IsoDirection = IsoTo | IsoFrom instance toBool GenericTypeDefInfo where toBool GTDI_Empty = False toBool (GTDI_Generic _) = True convertGenerics :: !{!Group} !Int !{#CommonDefs} !*{# FunDef} !*TypeDefInfos !*Heaps !*HashTable !*PredefinedSymbols !u:{# DclModule} /*!(Optional {#Index})*/ !*ErrorAdmin -> (!{!Group}, !{#CommonDefs}, !*{# FunDef}, !IndexRange, !*TypeDefInfos, !*Heaps, !*HashTable, !*PredefinedSymbols, !u:{# DclModule}, /*!(Optional {#Index}),*/ !*ErrorAdmin) convertGenerics groups main_dcl_module_n modules fun_defs td_infos heaps hash_table predefs dcl_modules //opt_dcl_icl_conversions error #! (fun_defs_size, fun_defs) = usize fun_defs #! groups_size = size groups #! (predef_size, predefs) = usize predefs #! (gs_predefs, predefs) = arrayCopyBegin predefs predef_size // determine sized of type def_infos: // ??? How to map 2-d unique array not so ugly ??? #! (td_infos_sizes, td_infos) = get_sizes 0 td_infos with get_sizes :: Int !*TypeDefInfos -> ([Int], !*TypeDefInfos) get_sizes n td_infos #! td_infos_size = size td_infos | n == td_infos_size = ([], td_infos) #! row_size = size td_infos.[n] # (row_sizes, td_infos) = get_sizes (n + 1) td_infos = ([row_size : row_sizes], td_infos) #! gtd_infos = { createArray s GTDI_Empty \\ s <- td_infos_sizes } #! gs = { gs_modules = {m \\m <-: modules} // unique copy , gs_groups = groups , gs_fun_defs = fun_defs , gs_td_infos = td_infos , gs_gtd_infos = gtd_infos , gs_heaps = heaps , gs_main_dcl_module_n = main_dcl_module_n , gs_first_fun = fun_defs_size , gs_last_fun = fun_defs_size , gs_first_group = groups_size , gs_last_group = groups_size , gs_predefs = gs_predefs , gs_dcl_modules = { x \\ x <-: dcl_modules } // unique copy , gs_opt_dcl_icl_conversions = No /* case opt_dcl_icl_conversions of No -> No Yes xs -> Yes {x \\ x <-: xs} // unique copy */ , gs_error = error } #! gs = collectInstanceKinds gs //---> "*** collect kinds used in generic instances and store them in the generics" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! gs = buildClasses gs //---> "*** build generic classes for all used kinds" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (generic_types, gs) = collectGenericTypes gs //---> "*** collect types of generics (needed for generic representation)" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (instance_types, gs) = convertInstances gs //---> "*** bind generic instances to classes and collect instance types" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! gs = checkConsInstances gs //---> "*** check that cons instances are provided for all generics" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (cons_funs, cons_groups, gs) = buildConsInstances gs | not ok //---> "*** bind function for CONS" = return gs predefs hash_table #! (td_indexes, gs) = collectGenericTypeDefs generic_types instance_types gs //---> "*** collect type definitions for which a generic representation must be created" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (iso_funs, iso_groups, gs) = buildIsoFunctions td_indexes gs //---> "*** build isomorphisms for type definitions" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (isomap_type_funs, isomap_type_groups, gs) = buildIsomapsForTypeDefs td_indexes gs //---> "*** build maps for type definitions" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (isomap_gen_funs, isomap_gen_groups, gs) = buildIsomapsForGenerics gs //---> "*** build maps for generic function types" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (instance_funs, instance_groups, gs) = buildInstances gs //---> "*** build instances" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! (star_funs, star_groups, gs) = buildKindConstInstances gs //---> "*** build shortcut instances for kind *" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table // the order in the lists below is important! // Indexes are allocated in that order. #! new_funs = cons_funs ++ iso_funs ++ isomap_type_funs ++ isomap_gen_funs ++ instance_funs ++ star_funs #! new_groups = cons_groups ++ iso_groups ++ isomap_type_groups ++ isomap_gen_groups ++ instance_groups ++ star_groups #! gs = addFunsAndGroups new_funs new_groups gs //---> "*** add geenrated functions" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table #! gs = determineMemberTypes 0 0 gs //---> "*** determine types of member instances" #! (ok,gs) = gs!gs_error.ea_ok | not ok = return gs predefs hash_table //| True = abort "-----------------\n" # { gs_modules, gs_groups, gs_fun_defs, gs_td_infos, gs_heaps, gs_dcl_modules, gs_opt_dcl_icl_conversions, gs_error} = gs #! {hte_symbol_heap} = hash_table #! cs = { cs_symbol_table = hte_symbol_heap , cs_predef_symbols = predefs , cs_error = gs_error , cs_x = { x_needed_modules = 0 , x_main_dcl_module_n = main_dcl_module_n // , x_is_dcl_module = False // , x_type_var_position = 0 } } #! (gs_dcl_modules, gs_modules, gs_heaps, cs_symbol_table) = create_class_dictionaries 0 gs_dcl_modules gs_modules gs_heaps cs.cs_symbol_table // create_class_dictionaries1 main_dcl_module_n dcl_modules gs_modules gs_heaps cs //---> "*** create class dictionaries" # hash_table = { hash_table & hte_symbol_heap = cs_symbol_table } #! index_range = {ir_from = gs.gs_first_fun, ir_to = gs.gs_last_fun} = ( gs_groups, gs_modules, gs_fun_defs, index_range, gs_td_infos, gs_heaps, hash_table, cs.cs_predef_symbols, gs_dcl_modules, /*gs_opt_dcl_icl_conversions,*/ cs.cs_error) where return { gs_modules, gs_groups, gs_fun_defs, gs_td_infos, gs_gtd_infos, gs_heaps, gs_main_dcl_module_n, gs_dcl_modules, gs_opt_dcl_icl_conversions, gs_error} predefs hash_table = ( gs_groups, gs_modules, gs_fun_defs, {ir_from=0,ir_to=0}, gs_td_infos, gs_heaps, hash_table, predefs, gs_dcl_modules, /*gs_opt_dcl_icl_conversions,*/ gs_error) create_class_dictionaries module_index dcl_modules modules heaps symbol_table #! size_of_modules = size modules | module_index == size_of_modules = (dcl_modules, modules, heaps, symbol_table) #! (dcl_modules, modules, heaps, symbol_table) = create_class_dictionaries1 module_index dcl_modules modules heaps symbol_table = create_class_dictionaries (inc module_index) dcl_modules modules heaps symbol_table create_class_dictionaries1 module_index dcl_modules modules heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}, hp_var_heap} symbol_table #! (common_defs, modules) = modules![module_index] #! class_defs = { x \\ x <-: common_defs.com_class_defs } // make unique copy # type_defs = { x \\ x <-: common_defs.com_type_defs } // make unique copy # cons_defs = { x \\ x <-: common_defs.com_cons_defs } // make unique copy # selector_defs = { x \\ x <-: common_defs.com_selector_defs } // make unique copy # (size_type_defs,type_defs) = usize type_defs #! (new_type_defs, new_selector_defs, new_cons_defs,_,type_defs,selector_defs,cons_defs,class_defs, dcl_modules, th_vars, hp_var_heap, symbol_table) = createClassDictionaries False //(abort "create_class_dictionaries1 True or False ?") module_index size_type_defs (size common_defs.com_selector_defs) (size common_defs.com_cons_defs) type_defs selector_defs cons_defs class_defs dcl_modules th_vars hp_var_heap symbol_table #! common_defs = { common_defs & com_class_defs = class_defs, com_type_defs = arrayPlusList type_defs new_type_defs, com_selector_defs = arrayPlusList selector_defs new_selector_defs, com_cons_defs = arrayPlusList cons_defs new_cons_defs} #! heaps = {heaps & hp_var_heap = hp_var_heap, hp_type_heaps = {hp_type_heaps & th_vars = th_vars}} #! modules = { modules & [module_index] = common_defs } = (dcl_modules, modules, heaps, symbol_table) convertInstances :: !*GenericState -> (![Global Index], !*GenericState) convertInstances gs = convert_modules 0 gs where convert_modules module_index gs=:{gs_modules} #! num_modules = size gs_modules | module_index == num_modules = ([], gs) #! (common_defs, gs_modules) = gs_modules ! [module_index] #! instance_defs = {i \\ i <-: common_defs.com_instance_defs} // make unique copy #! (new_types, instance_defs, gs) = convert_instances module_index 0 instance_defs {gs & gs_modules = gs_modules} #! (types, gs) = convert_modules (inc module_index) gs #! {gs_modules} = gs #! (common_defs, gs_modules) = gs_modules ! [module_index] #! gs_modules = { gs_modules & [module_index] = {common_defs & com_instance_defs = instance_defs}} = (new_types ++ types, {gs & gs_modules = gs_modules}) convert_instances module_index instance_index instance_defs gs #! num_instance_defs = size instance_defs | instance_index == num_instance_defs = ([], instance_defs, gs) #! (new_types, instance_defs, gs) = convert_instance module_index instance_index instance_defs gs #! (types, instance_defs, gs) = convert_instances module_index (inc instance_index) instance_defs gs = (new_types ++ types, instance_defs, gs) convert_instance :: !Index !Index !*{#ClassInstance} !*GenericState -> (![Global Index], !*{#ClassInstance}, !*GenericState) convert_instance module_index instance_index instance_defs gs=:{gs_td_infos, gs_modules, gs_error, gs_fun_defs, gs_predefs, gs_heaps} // = abort "generics; convert_instance" #! (instance_def=:{ins_class,ins_ident}, instance_defs) = instance_defs ! [instance_index] | not instance_def.ins_is_generic # gs = { gs & gs_td_infos = gs_td_infos , gs_modules = gs_modules , gs_fun_defs = gs_fun_defs , gs_heaps = gs_heaps , gs_error = gs_error } = ([], instance_defs, gs) // determine the kind of the instance type #! it_type = hd instance_def.ins_type.it_types #! (kind, gs_td_infos) = kindOfType it_type gs_td_infos #! (generic_def, gs_modules) = getGenericDef ins_class.glob_module ins_class.glob_object.ds_index gs_modules #! (ok, class_ds) = getGenericClassForKind generic_def kind | not ok = abort ("no class " +++ ins_ident.id_name +++ "for kind" +++ toString kind) // bind the instance to the class #! instance_def = { instance_def & ins_class = {glob_module=ins_class.glob_module, glob_object=class_ds} , ins_ident = makeIdent ins_ident.id_name } #! (is_partial, gs_fun_defs) = check_if_partial instance_def gs_predefs gs_fun_defs # (ok, gs_modules, gs_error) = check_instance_args instance_def gs_modules gs_error | not ok #! instance_defs = { instance_defs & [instance_index] = instance_def} #! gs = { gs & gs_td_infos = gs_td_infos , gs_modules = gs_modules , gs_fun_defs = gs_fun_defs , gs_heaps = gs_heaps , gs_error = gs_error } = ([], instance_defs, gs) # gs_heaps = check_cons_instance generic_def instance_def it_type gs_predefs gs_heaps # (maybe_td_index, instance_def, gs_modules, gs_error) = determine_type_def_index it_type instance_def is_partial gs_modules gs_error # gs = { gs & gs_td_infos = gs_td_infos , gs_modules = gs_modules , gs_fun_defs = gs_fun_defs , gs_heaps = gs_heaps , gs_error = gs_error } #! instance_defs = { instance_defs & [instance_index] = instance_def} = (maybe_td_index, instance_defs, gs) determine_type_def_index (TA {type_index, type_name} _) instance_def=:{ins_generate, ins_ident, ins_pos} is_partial gs_modules gs_error #! ({td_rhs, td_index}, gs_modules) = getTypeDef type_index.glob_module type_index.glob_object gs_modules = determine_td_index td_rhs gs_modules gs_error where determine_td_index (AlgType _) gs_modules gs_error | ins_generate = ([type_index], instance_def, gs_modules, gs_error) | supportPartialInstances && is_partial = ([type_index], {instance_def & ins_partial = True}, gs_modules, gs_error) //---> ("collected partial instance type", type_name, type_index) | otherwise = ([], instance_def, gs_modules, gs_error) determine_td_index (RecordType _) gs_modules gs_error | ins_generate = ([type_index], instance_def, gs_modules, gs_error) | supportPartialInstances && is_partial = ([type_index], {instance_def & ins_partial = True}, gs_modules, gs_error) //---> ("collected partial instance type", type_name, type_index) | otherwise = ([], instance_def, gs_modules, gs_error) determine_td_index (SynType _) gs_modules gs_error # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "generic instance type cannot be a synonym type" gs_error = ([], instance_def, gs_modules, gs_error) determine_td_index (AbstractType _) gs_modules gs_error | ins_generate # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "cannot generate an instance for an abstract data type" gs_error = ([], instance_def, gs_modules, gs_error) = ([], instance_def, gs_modules, gs_error) determine_type_def_index TArrow instance_def=:{ins_generate,ins_ident,ins_pos} _ gs_modules gs_error | ins_generate # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "cannot generate an instance for arrow type" gs_error = ([], instance_def, gs_modules, gs_error) = ([], instance_def, gs_modules, gs_error) determine_type_def_index (TArrow1 _) instance_def=:{ins_generate,ins_ident,ins_pos} _ gs_modules gs_error | ins_generate # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "cannot generate an instance for arrow type" gs_error = ([], instance_def, gs_modules, gs_error) = ([], instance_def, gs_modules, gs_error) determine_type_def_index (TB _) instance_def=:{ins_generate,ins_ident,ins_pos} _ gs_modules gs_error | ins_generate # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "cannot generate an instance for a basic type" gs_error = ([], instance_def, gs_modules, gs_error) = ([], instance_def, gs_modules, gs_error) determine_type_def_index _ instance_def=:{ins_ident,ins_pos} _ gs_modules gs_error #! gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "generic instance type must be a type constructor or a primitive type" gs_error = ([], instance_def, gs_modules, gs_error) check_if_partial :: !ClassInstance !PredefinedSymbols !*{#FunDef} -> (!Bool, !*{#FunDef}) check_if_partial instance_def=:{ins_members, ins_ident, ins_type, ins_generate} gs_predefs gs_fun_defs = case supportPartialInstances of True | ins_generate -> (False, gs_fun_defs) | check_if_predef (hd ins_type.it_types) gs_predefs -> (False, gs_fun_defs) // PAIR, EITHER, CONS, UNIT #! ins_fun_ds = ins_members.[0] | ins_fun_ds.ds_index == NoIndex // can this happen? -> (False, gs_fun_defs) | otherwise #! (fun_def, gs_fun_defs) = gs_fun_defs ! [ins_fun_ds.ds_index] # (TransformedBody {tb_rhs}) = fun_def.fun_body -> case tb_rhs of Case {case_default=No} -> (True, gs_fun_defs) _ -> (False, gs_fun_defs) False -> (False, gs_fun_defs) where check_if_predef (TA {type_index={glob_module, glob_object}} _) gs_predefs # {pds_module, pds_def} = gs_predefs.[PD_TypeUNIT] | glob_module == pds_module && glob_object == pds_def = True # {pds_module, pds_def} = gs_predefs.[PD_TypePAIR] | glob_module == pds_module && glob_object == pds_def = True # {pds_module, pds_def} = gs_predefs.[PD_TypeEITHER] | glob_module == pds_module && glob_object == pds_def = True # {pds_module, pds_def} = gs_predefs.[PD_TypeCONS] | glob_module == pds_module && glob_object == pds_def = True | otherwise = False check_if_predef _ gs_predefs = False check_cons_instance {gen_cons_ptr} {ins_members} (TA {type_index={glob_module, glob_object}} _) predefs heaps | not supportConsInfo = heaps # {pds_module, pds_def} = predefs.[PD_TypeCONS] | glob_module <> pds_module || glob_object <> pds_def = heaps # {hp_type_heaps=hp_type_heaps=:{th_vars}}=heaps # th_vars = writePtr gen_cons_ptr (TVI_ConsInstance ins_members.[0]) th_vars = {heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}} check_cons_instance _ _ _ _ heaps = heaps check_instance_args instance_def=:{ins_class={glob_module,glob_object}, ins_ident, ins_pos, ins_type, ins_generate} gs_modules gs_error | ins_generate = (True, gs_modules, gs_error) # (class_def=:{class_members}, gs_modules) = getClassDef glob_module glob_object.ds_index gs_modules # (member_def, gs_modules) = getMemberDef glob_module class_def.class_members.[0].ds_index gs_modules | member_def.me_type.st_arity <> instance_def.ins_members.[0].ds_arity && instance_def.ins_members.[0].ds_arity <> (-1) # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "generic instance function has incorrect arity" gs_error = (False, gs_modules, gs_error) = (True, gs_modules, gs_error) // check that CONS instances are provided for all generics checkConsInstances :: !*GenericState -> !*GenericState checkConsInstances gs | supportConsInfo = check_cons_instances 0 0 gs = gs where check_cons_instances module_index generic_index gs=:{gs_modules, gs_heaps, gs_error} #! size_gs_modules = size gs_modules | module_index == size_gs_modules = {gs & gs_modules = gs_modules} # (generic_defs, gs_modules) = gs_modules ! [module_index].com_generic_defs #! size_generic_defs = size generic_defs | generic_index == size_generic_defs = check_cons_instances (inc module_index) 0 {gs & gs_modules = gs_modules} # (gs_heaps, gs_error) = check_generic generic_defs.[generic_index] gs_heaps gs_error = check_cons_instances module_index (inc generic_index) {gs & gs_modules = gs_modules, gs_heaps = gs_heaps, gs_error = gs_error} check_generic {gen_cons_ptr, gen_name, gen_pos} gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} gs_error # (info, th_vars) = readPtr gen_cons_ptr th_vars # gs_error = case info of TVI_ConsInstance _ -> gs_error _ -> reportError gen_name gen_pos "instance on CONS must be provided" gs_error = ({gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}}, gs_error) collectGenericTypes :: !*GenericState -> (![Type], !*GenericState) collectGenericTypes gs=:{gs_modules} # (types, gs_modules) = collect_in_modules 0 0 gs_modules = (types, {gs & gs_modules = gs_modules}) where collect_in_modules module_index generic_index gs_modules #! size_gs_modules = size gs_modules | module_index == size_gs_modules = ([], gs_modules) # (generic_defs, gs_modules) = gs_modules ! [module_index].com_generic_defs #! size_generic_defs = size generic_defs | generic_index == size_generic_defs = collect_in_modules (inc module_index) 0 gs_modules # {gen_type={gt_type={st_args, st_result}}} = generic_defs . [generic_index] # (types, gs_modules) = collect_in_modules module_index (inc generic_index) gs_modules = ([at_type \\ {at_type} <- [st_result:st_args]] ++ types, gs_modules) buildConsInstances :: !*GenericState -> (![FunDef], ![Group], !*GenericState) buildConsInstances gs | supportConsInfo = build_cons_instances 0 0 gs = ([], [], gs) where build_cons_instances module_index generic_index gs=:{gs_modules} #! size_gs_modules = size gs_modules | module_index == size_gs_modules = ([], [], {gs & gs_modules = gs_modules}) # (generic_defs, gs_modules) = gs_modules ! [module_index].com_generic_defs # gs = {gs & gs_modules = gs_modules} #! size_generic_defs = size generic_defs | generic_index == size_generic_defs = build_cons_instances (inc module_index) 0 gs # (fun, group, gs) = build_cons_instance generic_defs.[generic_index] gs # (funs, groups, gs) = build_cons_instances module_index (inc generic_index) gs = ([fun:funs], [group:groups], gs) build_cons_instance generic_def gs #! (fun_index, group_index, gs) = newFunAndGroupIndex gs #! (ins_fun_def_sym, gs) = get_cons_fun generic_def gs #! {gs_fun_defs, gs_predefs, gs_heaps} = gs #! fun_def_sym = { ds_ident = makeIdent (ins_fun_def_sym.ds_ident.id_name +++ ":cons_info") , ds_arity = ins_fun_def_sym.ds_arity + 1 , ds_index = fun_index } #! gs_heaps = set_cons_fun generic_def fun_def_sym gs_heaps #! (ins_fun_def, gs_fun_defs) = gs_fun_defs ! [ins_fun_def_sym.ds_index] #! (fun_def, gs_heaps) = copyFunDef ins_fun_def fun_index group_index gs_heaps #! (fun_def, gs_heaps) = parametrize_with_cons_info fun_def gs_predefs gs_heaps #! group = {group_members = [fun_index]} = (fun_def, group, {gs & gs_fun_defs = gs_fun_defs, gs_heaps = gs_heaps}) //---> ("build_cons_instance", ins_fun_def, fun_def) where parametrize_with_cons_info fun_def=:{fun_arity, fun_body} predefs heaps # (var_expr, var, heaps) = buildVarExpr "cons_info" heaps # (TransformedBody tb=:{tb_args, tb_rhs}) = fun_body # (tb_rhs, heaps) = mapExprSt (replace_cons_info var_expr) tb_rhs heaps # fun_def = { fun_def & fun_arity = fun_arity + 1 , fun_body = TransformedBody {tb & tb_args = [var:tb_args], tb_rhs = tb_rhs} } = (fun_def, heaps) where {pds_module,pds_def} = predefs.[PD_cons_info] replace_cons_info var_expr expr=:(App {app_symb={symb_kind=SK_Function {glob_object, glob_module}}}) heaps | pds_module == glob_module && pds_def == glob_object = (var_expr, heaps) //---> ("replace_cons_info", expr, var_expr) = (expr, heaps) //---> ("replace_cons_info: App expr1", expr) replace_cons_info var_expr expr=:(App app) heaps = (expr, heaps) //---> ("replace_cons_info: App expr2", expr) replace_cons_info var_expr expr heaps = (expr, heaps) get_cons_fun {gen_cons_ptr, gen_pos, gen_name} gs=:{gs_heaps=gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}}, gs_error} # (info, th_vars) = readPtr gen_cons_ptr th_vars # gs_heaps = { gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars }} # (fun_def_sym, gs_error) = case info of TVI_ConsInstance fun_def_sym -> (fun_def_sym, gs_error) TVI_Empty -> (EmptyDefinedSymbol, reportError gen_name gen_pos "no CONS instance provided" gs_error) = (fun_def_sym, {gs & gs_heaps = gs_heaps, gs_error = gs_error}) set_cons_fun {gen_cons_ptr} fun_def_sym gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} # th_vars = writePtr gen_cons_ptr (TVI_ConsInstance fun_def_sym) th_vars = { gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars }} collectInstanceKinds :: !*GenericState -> !*GenericState collectInstanceKinds gs = collect_instance_kinds 0 0 gs where collect_instance_kinds module_index instance_index gs=:{gs_modules} #! size_modules = size gs_modules | module_index == size_modules = gs #! (common_defs, gs_modules) = gs_modules ! [module_index] #! size_instance_defs = size common_defs.com_instance_defs | instance_index == size_instance_defs = collect_instance_kinds (inc module_index) 0 {gs & gs_modules = gs_modules} #! gs = collect_instance module_index instance_index {gs & gs_modules = gs_modules} = collect_instance_kinds module_index (inc instance_index) gs collect_instance module_index instance_index gs=:{gs_heaps, gs_modules, gs_td_infos} #! (instance_def=:{ins_class, ins_is_generic, ins_type}, gs_modules) = getInstanceDef module_index instance_index gs_modules | not instance_def.ins_is_generic = {gs & gs_modules = gs_modules, gs_heaps = gs_heaps } #! (generic_def, gs_modules) = getGenericDef ins_class.glob_module ins_class.glob_object.ds_index gs_modules #! (kind, gs_td_infos) = kindOfType (hd ins_type.it_types) gs_td_infos #! gs_heaps = update_kind generic_def kind gs_heaps = {gs & gs_modules = gs_modules, gs_heaps = gs_heaps, gs_td_infos = gs_td_infos} update_kind {gen_kinds_ptr} kind gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} #! (TVI_Kinds kinds, th_vars) = readPtr gen_kinds_ptr th_vars #! kinds = eqMerge [kind] kinds #! th_vars = writePtr gen_kinds_ptr (TVI_Kinds kinds) th_vars = {gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}} buildClasses :: !*GenericState -> !*GenericState buildClasses gs = build_modules 0 gs where build_modules module_index gs=:{gs_modules} #! size_gs_modules = size gs_modules | module_index == size_gs_modules = { gs & gs_modules = gs_modules } #! common_defs = gs_modules . [module_index] #! (common_defs, gs=:{gs_modules}) = build_module module_index common_defs gs #! gs = {gs & gs_modules = {gs_modules & [module_index] = common_defs}} = build_modules (inc module_index) gs build_module module_index common_defs gs #! {com_generic_defs,com_class_defs, com_member_defs} = common_defs #! class_index = size com_class_defs #! member_index = size com_member_defs #! com_generic_defs = {x \\ x <-: com_generic_defs} // make unique copy # (new_class_defs, new_member_defs, com_generic_defs, _, _, gs) = build_generics module_index 0 class_index member_index com_generic_defs gs # common_defs = { common_defs & com_class_defs = arrayPlusRevList com_class_defs new_class_defs , com_member_defs = arrayPlusRevList com_member_defs new_member_defs , com_generic_defs = com_generic_defs } = (common_defs, gs) build_generics module_index generic_index class_index member_index generic_defs gs #! size_generic_defs = size generic_defs | generic_index == size_generic_defs = ([], [], generic_defs, class_index, member_index, gs) #! (generic_def, generic_defs) = generic_defs ! [generic_index] #! (new_class_defs, new_member_defs, generic_def, class_index, member_index, gs) = build_generic module_index class_index member_index generic_def gs #! generic_defs = {generic_defs & [generic_index] = generic_def} #! (new_class_defs1, new_member_defs1, generic_defs, class_index, member_index, gs) = build_generics module_index (inc generic_index) class_index member_index generic_defs gs = (new_class_defs ++ new_class_defs1, new_member_defs ++ new_member_defs1, generic_defs, class_index, member_index, gs) build_generic module_index class_index member_index generic_def gs # (kinds, gs) = get_kinds generic_def gs = build_classes kinds generic_def module_index class_index member_index gs build_classes :: ![TypeKind] !GenericDef !Index !Index !Index !*GenericState -> (![ClassDef], ![MemberDef], !GenericDef, !Index, !Index, !*GenericState) build_classes [] generic_def module_index class_index member_index gs = ([], [], generic_def, class_index, member_index, gs) build_classes [kind:kinds] generic_def module_index class_index member_index gs #! (class_def, member_def, generic_def, gs) = buildClassDef module_index class_index member_index generic_def kind gs #! (class_defs, member_defs, generic_def, class_index, member_index, gs) = build_classes kinds generic_def module_index (inc class_index) (inc member_index) gs = ([class_def:class_defs], [member_def:member_defs], generic_def, class_index, member_index, gs) get_kinds {gen_kinds_ptr} gs=:{gs_heaps=gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}}} #! (TVI_Kinds kinds, th_vars) = readPtr gen_kinds_ptr th_vars #! th_vars = writePtr gen_kinds_ptr TVI_Empty th_vars = (kinds, {gs & gs_heaps = {gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}}}) // find all types whose generic representation is needed collectGenericTypeDefs :: ![Type] [Global Index] !*GenericState -> (![Global Index], !*GenericState) collectGenericTypeDefs generic_types instance_td_indexes gs # (td_indexes, gs) = collect_in_types generic_types gs # (td_indexes, gs) = add_instance_indexes td_indexes instance_td_indexes gs = (map fst td_indexes, gs) where add_instance_indexes td_indexes [] gs = (td_indexes, gs) add_instance_indexes td_indexes [type_index=:{glob_module, glob_object} : itdis] gs=:{gs_gtd_infos, gs_td_infos} # (gtd_info, gs_gtd_infos) = gs_gtd_infos ! [glob_module, glob_object] # gs_gtd_infos = {gs_gtd_infos & [glob_module, glob_object] = GTDI_Generic EmptyGenericType} # (td_info, gs_td_infos) = gs_td_infos ! [glob_module, glob_object] # gs = {gs & gs_td_infos = gs_td_infos, gs_gtd_infos = gs_gtd_infos} | toBool gtd_info // already marked = add_instance_indexes td_indexes itdis gs //---> ("instance type already added", type_index) # gs_gtd_infos = {gs_gtd_infos & [glob_module, glob_object] = GTDI_Generic EmptyGenericType} = add_instance_indexes (merge_td_indexes [(type_index, td_info.tdi_group_nr)] td_indexes) itdis gs //---> ("add instance type index", type_index) collect_in_types :: ![Type] !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_types [] gs = ([], gs) collect_in_types [type:types] gs # (td_indexes1, gs) = collect_in_type type gs # (td_indexes2, gs) = collect_in_types types gs = (merge_td_indexes td_indexes1 td_indexes2, gs) collect_in_type :: !Type !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_type (TA type_symb arg_types) gs # (td_indexes1, gs) = collect_in_atypes arg_types gs # (td_indexes2, gs) = collect_in_type_app type_symb gs = (merge_td_indexes td_indexes1 td_indexes2, gs) where collect_in_type_app {type_arity=0} gs // types with no arguments do not need mapping to be built: // their mapping is identity = ([], gs) collect_in_type_app {type_index=type_index=:{glob_module, glob_object}, type_name} gs=:{gs_gtd_infos, gs_td_infos, gs_modules} # (gtd_info, gs_gtd_infos) = gs_gtd_infos ! [glob_module, glob_object] | toBool gtd_info // already marked = ([], {gs & gs_gtd_infos = gs_gtd_infos}) //---> ("already marked type", type_name, type_index) | otherwise // not yet marked # gs_gtd_infos = {gs_gtd_infos & [glob_module, glob_object] = GTDI_Generic EmptyGenericType} # (td_info, gs_td_infos) = gs_td_infos ! [glob_module, glob_object] # (type_def, gs_modules) = getTypeDef glob_module glob_object gs_modules # gs = {gs & gs_td_infos = gs_td_infos, gs_gtd_infos = gs_gtd_infos, gs_modules = gs_modules} # (td_indexes1, gs) = collect_in_type_def_rhs glob_module type_def gs # td_indexes2 = [(type_index, td_info.tdi_group_nr)] = (merge_td_indexes td_indexes1 td_indexes2, gs) //---> ("mark type", type_name, type_index) collect_in_type (arg_type --> res_type) gs #! (td_indexes1, gs) = collect_in_atype arg_type gs #! (td_indexes2, gs) = collect_in_atype res_type gs = (merge_td_indexes td_indexes1 td_indexes2, gs) collect_in_type (TArrow1 arg_type) gs = collect_in_atype arg_type gs collect_in_type (cons_var :@: args) gs #! types = [ at_type \\ {at_type} <- args] = collect_in_types types gs collect_in_type _ gs = ([], gs) collect_in_atype :: !AType !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_atype {at_type} gs = collect_in_type at_type gs collect_in_atypes :: ![AType] !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_atypes [] gs = ([], gs) collect_in_atypes [atype:atypes] gs # (td_indexes1, gs) = collect_in_atype atype gs # (td_indexes2, gs) = collect_in_atypes atypes gs # merged_td_indexes = merge_td_indexes td_indexes1 td_indexes2 = (merged_td_indexes, gs) collect_in_type_def_rhs :: !Index !CheckedTypeDef !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_type_def_rhs mod {td_rhs=(AlgType cons_def_symbols)} gs = collect_in_conses mod cons_def_symbols gs collect_in_type_def_rhs mod {td_rhs=(RecordType {rt_constructor})} gs = collect_in_conses mod [rt_constructor] gs collect_in_type_def_rhs mod {td_rhs=(SynType {at_type})} gs = collect_in_type at_type gs collect_in_type_def_rhs mod {td_rhs=(AbstractType _), td_name, td_pos} gs=:{gs_error} #! gs_error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build generic type representation for an abstract type" gs_error = ([], {gs & gs_error = gs_error}) //= ([], {gs & gs_error = checkWarning td_name "abstract data type" gs_error}) collect_in_conses :: !Index ![DefinedSymbol] !*GenericState -> (![(Global Index, Int)], !*GenericState) collect_in_conses mod [] gs = ([], gs) collect_in_conses mod [{ds_index, ds_ident} : cons_def_symbols] gs=:{gs_modules} #! ({cons_type={st_args}}, gs_modules) = getConsDef mod ds_index gs_modules //---> ("mark cons " +++ ds_ident.id_name) #! types = [ at_type \\ {at_type} <- st_args] #! (td_indexes1, gs) = collect_in_types types {gs & gs_modules=gs_modules} #! (td_indexes2, gs) = collect_in_conses mod cons_def_symbols gs = (merge_td_indexes td_indexes1 td_indexes2, gs) collect_in_symbol_type {st_args, st_result} gs #! (td_indexes1, gs) = collect_in_types (map (\x->x.at_type) st_args) gs #! (td_indexes2, gs) = collect_in_type st_result.at_type gs = (merge_td_indexes td_indexes1 td_indexes2, gs) merge_td_indexes x y = mergeBy (\(_,l) (_,r) ->l < r) x y buildIsoFunctions :: ![Global Index] !*GenericState -> (![FunDef], ![Group], !*GenericState) buildIsoFunctions [] gs = ([], [], gs) buildIsoFunctions [type_index:type_indexes] gs #! (iso_funs1, iso_groups1, gs) = build_function type_index gs #! (iso_funs2, iso_groups2, gs) = buildIsoFunctions type_indexes gs = (iso_funs1 ++ iso_funs2, iso_groups1 ++ iso_groups2, gs) where build_function {glob_module, glob_object} gs # (generic_rep_type, gs) = buildGenericRepType glob_module glob_object gs # (type_info_def_sym, cons_info_def_syms, info_fun_defs, info_groups, gs) = build_cons_infos glob_module glob_object gs # (iso_def_sym, iso_fun_defs, iso_groups, gs) = build_isos glob_module glob_object cons_info_def_syms gs # gs = fill_generic_type_info glob_module glob_object generic_rep_type iso_def_sym type_info_def_sym cons_info_def_syms gs = (info_fun_defs ++ iso_fun_defs, info_groups ++ iso_groups, gs) fill_generic_type_info module_index type_def_index generic_rep_type iso_def_sym type_info_def_sym cons_info_def_syms gs=:{gs_gtd_infos, gs_modules} # (type_def=:{td_args}, gs_modules) = getTypeDef module_index type_def_index gs_modules # gtd_info = GTDI_Generic { gtr_type = generic_rep_type , gtr_type_args = [atv_variable \\ {atv_variable} <- td_args] , gtr_iso = iso_def_sym , gtr_isomap_group= NoIndex , gtr_isomap = EmptyDefinedSymbol , gtr_isomap_from = EmptyDefinedSymbol , gtr_isomap_to = EmptyDefinedSymbol , gtr_type_info = type_info_def_sym , gtr_cons_infos = cons_info_def_syms } # gs_gtd_infos = {gs_gtd_infos & [module_index, type_def_index] = gtd_info} = {gs & gs_modules = gs_modules, gs_gtd_infos = gs_gtd_infos} build_isos module_index type_def_index cons_infos gs # (from_fun_index, from_group_index, gs) = newFunAndGroupIndex gs # (to_fun_index, to_group_index, gs) = newFunAndGroupIndex gs # (iso_fun_index, iso_group_index, gs) = newFunAndGroupIndex gs # {gs_modules} = gs # (type_def=:{td_name}, gs_modules) = getTypeDef module_index type_def_index gs_modules # gs = {gs & gs_modules = gs_modules} # iso_def_sym = { ds_ident = {id_name="iso_"+++type_def.td_name.id_name, id_info = nilPtr }, ds_index = iso_fun_index, ds_arity = 0 } # from_def_sym = { ds_ident = {id_name="iso_from_generic_to_"+++type_def.td_name.id_name, id_info = nilPtr }, ds_index = from_fun_index, ds_arity = 1 } # to_def_sym = { ds_ident = {id_name="iso_to_generic_from_"+++type_def.td_name.id_name, id_info = nilPtr }, ds_index = to_fun_index, ds_arity = 1 } # (from_fun_def, gs) = buildIsoFrom from_def_sym from_group_index module_index type_def gs # (to_fun_def, gs) = buildIsoTo to_def_sym to_group_index module_index type_def cons_infos gs # (iso_fun_def, gs) = //buildUndefFunction iso_fun_index iso_group_index iso_name 1 gs_predefs gs_heaps buildIsoRecord iso_def_sym iso_group_index from_def_sym to_def_sym gs # fun_defs = [from_fun_def, to_fun_def, iso_fun_def] # groups = [ {group_members=[from_fun_index]} , {group_members=[to_fun_index]} , {group_members=[iso_fun_index]} ] = (iso_def_sym, fun_defs, groups, gs) build_cons_infos module_index type_def_index gs = case supportCons of False -> (EmptyDefinedSymbol, [], [], [], gs) True -> build_cons_infos1 module_index type_def_index gs build_cons_infos1 module_index type_def_index gs=:{gs_modules} # (type_def=:{td_rhs}, gs_modules) = getTypeDef module_index type_def_index gs_modules # (common_defs, gs_modules) = gs_modules ! [module_index] # gs = {gs & gs_modules = gs_modules} # (type_fun_index, group_index, gs) = newFunAndGroupIndex gs # type_fun_sym = { ds_ident = makeIdent ("type_info_" +++ type_def.td_name.id_name) , ds_index = type_fun_index , ds_arity = 0 } # (cons_fun_syms, cons_fun_defs, gs) = case td_rhs of (AlgType alts) -> build_alg_cons_infos alts 0 type_fun_sym group_index common_defs gs (RecordType {rt_constructor}) -> build_alg_cons_infos [rt_constructor] 0 type_fun_sym group_index common_defs gs _ -> ([], [], gs) # (type_fun_def, gs) = build_typedef_info type_def type_fun_sym group_index cons_fun_syms gs # group = { group_members = [type_fun_index : [ds_index \\ {ds_index} <- cons_fun_syms]] } = (type_fun_sym, cons_fun_syms, [type_fun_def:cons_fun_defs], [group], gs) build_alg_cons_infos [] cons_num type_info_def_sym group_index common_defs gs = ([], [], gs) build_alg_cons_infos [cons_def_sym:cons_def_syms] cons_num type_info_def_sym group_index common_defs gs # (fi, fd, gs) = build_cons_info cons_def_sym cons_num type_info_def_sym group_index common_defs gs # (fis, fds, gs) = build_alg_cons_infos cons_def_syms (inc cons_num) type_info_def_sym group_index common_defs gs = ([fi:fis], [fd:fds], gs) build_cons_info {ds_index,ds_arity} cons_num type_info_def_sym group_index common_defs gs=:{gs_main_dcl_module_n} # {cons_symb, cons_pos, cons_type} = common_defs.com_cons_defs.[ds_index] # (fun_index, gs) = newFunIndex gs # def_sym = { ds_ident = makeIdent ("cons_info_" +++ cons_symb.id_name) , ds_index = fun_index , ds_arity = 0 } # {gs_modules,gs_heaps, gs_predefs, gs_main_dcl_module_n} = gs # cons_name_expr = makeStringExpr ("\""+++cons_symb.id_name+++"\"") gs_predefs # cons_arity_expr = makeIntExpr ds_arity # cons_num_expr = makeIntExpr cons_num # (cons_type_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n type_info_def_sym [] gs_heaps # gs = {gs & gs_heaps = gs_heaps, gs_modules = gs_modules} # (cons_arg_type_exprs, gs=:{gs_heaps}) = build_type_infos cons_type.st_args gs # (cons_arg_types_expr, gs_heaps) = makeListExpr cons_arg_type_exprs gs_predefs gs_heaps # (cons_info_expr, gs_heaps) = buildPredefConsApp PD_ConsConsDefInfo [ cons_name_expr , cons_arity_expr , cons_num_expr , cons_type_expr , cons_arg_types_expr ] gs_predefs gs_heaps # fun_def = makeFunction def_sym group_index [] cons_info_expr No [] gs_main_dcl_module_n cons_pos //# (fun_def, gs_heaps) = buildUndefFunction def_sym group_index gs_predefs gs_heaps = (def_sym, fun_def, {gs & gs_heaps=gs_heaps}) build_type_infos [] gs = ([], gs) build_type_infos [t:ts] gs # (e, gs) = build_type_info t gs # (es, gs) = build_type_infos ts gs = ([e:es], gs) build_type_def name arity vars cons_info_def_syms gs=:{gs_main_dcl_module_n, gs_predefs, gs_heaps} # name_expr = makeStringExpr ("\""+++name+++"\"") gs_predefs # kind_expr = makeIntExpr arity # var_exprs = [ makeStringExpr ("\""+++v+++"\"") gs_predefs \\ v <- vars] # (var_list_expr, gs_heaps) = makeListExpr var_exprs gs_predefs gs_heaps # (cons_info_exprs, gs_heaps) = mapSt build_app cons_info_def_syms gs_heaps with build_app cons_info_def_sym h //= buildUndefFunApp [] gs_predefs h = buildFunApp gs_main_dcl_module_n cons_info_def_sym [] h # (cons_info_list_expr, gs_heaps) = makeListExpr cons_info_exprs gs_predefs gs_heaps # (typedefinfo_expr, gs_heaps) = buildPredefConsApp PD_ConsTypeDefInfo [ name_expr , kind_expr , var_list_expr , cons_info_list_expr ] gs_predefs gs_heaps = (typedefinfo_expr, {gs & gs_heaps = gs_heaps}) build_type_def_app name arity vars cons_info_def_syms arg_exprs gs=:{gs_predefs, gs_heaps} # (arg_list_expr, gs_heaps) = makeListExpr arg_exprs gs_predefs gs_heaps # (type_def_expr, gs=:{gs_heaps}) = build_type_def name arity vars cons_info_def_syms {gs & gs_heaps = gs_heaps} # (type_app_expr, gs_heaps) = buildPredefConsApp PD_ConsTypeApp [ type_def_expr , arg_list_expr ] gs_predefs gs_heaps = (type_app_expr, { gs & gs_heaps = gs_heaps}) build_type_info {at_type=TA {type_name,type_arity} ts} gs # (arg_exprs, gs) = build_type_infos ts gs = build_type_def_app type_name.id_name type_arity [] [] arg_exprs gs build_type_info {at_type=arg --> res} gs # (arg_expr, gs) = build_type_info arg gs # (res_expr, gs) = build_type_info res gs = build_type_def_app "->" 2 ["a", "b"] [] [arg_expr, res_expr] gs build_type_info {at_type=TB t} gs # name = case t of BT_Int -> "Int" BT_Char -> "Char" BT_Real -> "Real" BT_Bool -> "Bool" BT_Dynamic -> "Dynamic" BT_File -> "File" BT_World -> "World" BT_String _ -> "String" = build_type_def_app name 0 [] [] [] gs build_type_info {at_type=TV {tv_name}} gs=:{gs_heaps, gs_predefs} # name_expr = makeStringExpr ("\"" +++ tv_name.id_name +++ "\"") gs_predefs # (expr, gs_heaps) = buildPredefConsApp PD_ConsTypeVar [ name_expr ] gs_predefs gs_heaps = (expr, {gs & gs_heaps = gs_heaps}) build_type_info {at_type} gs=:{gs_heaps, gs_predefs} # name_expr = makeStringExpr ("\"error\"") gs_predefs # (expr, gs_heaps) = buildPredefConsApp PD_ConsTypeVar [ name_expr ] gs_predefs gs_heaps = (expr, {gs & gs_heaps = gs_heaps}) build_typedef_info {td_pos,td_name, td_args} type_info_def_sym group_index cons_info_def_syms gs=:{gs_main_dcl_module_n} # type_vars = [ atv.atv_variable.tv_name.id_name \\ atv <- td_args] # (body_expr, gs) = build_type_def td_name.id_name type_info_def_sym.ds_arity type_vars cons_info_def_syms gs # fun_def = makeFunction type_info_def_sym group_index [] body_expr No [] gs_main_dcl_module_n td_pos = (fun_def, gs) buildIsomapsForTypeDefs :: ![Global Index] !*GenericState -> (![FunDef], ![Group], !*GenericState) buildIsomapsForTypeDefs td_indexes gs=:{gs_last_group} # gs = foldSt fill_function_indexes td_indexes gs # first_group = gs_last_group # (funs, gs) = build_isomap_functions td_indexes gs # (last_group, gs) = gs ! gs_last_group # groups = createArray (last_group - first_group) [] //---> ("created " +++ toString (last_group - first_group) +++ " isomap groups") # groups = collect_groups first_group funs groups # groups = [ {group_members = fs} \\ fs <-: groups ] = (map snd funs, groups, gs) where fill_function_indexes :: !(Global Index) !*GenericState -> !*GenericState fill_function_indexes {glob_module, glob_object} gs # (kind, gs) = get_kind glob_module glob_object gs | kind == KindConst // types of kind * do not need isomaps - they are identity = gs # (from_fun_index, gs) = newFunIndex gs # (to_fun_index, gs) = newFunIndex gs # (rec_fun_index, gs) = newFunIndex gs # (gs=:{gs_gtd_infos, gs_modules}) = gs # (type_def=:{td_name, td_arity}, gs_modules) = getTypeDef glob_module glob_object gs_modules # (GTDI_Generic gt, gs_gtd_infos) = gs_gtd_infos ! [glob_module, glob_object] # gtd_info = GTDI_Generic {gt & gtr_isomap_from = { ds_ident = {id_name="isomap_from_"+++td_name.id_name, id_info=nilPtr}, ds_index = from_fun_index, ds_arity = (td_arity + 1) }, gtr_isomap_to = { ds_ident = {id_name="isomap_to_"+++td_name.id_name, id_info=nilPtr}, ds_index = to_fun_index, ds_arity = (td_arity + 1) }, gtr_isomap = { ds_ident = {id_name="isomap_"+++td_name.id_name, id_info=nilPtr}, ds_index = rec_fun_index, ds_arity = td_arity } } # gs_gtd_infos = {gs_gtd_infos & [glob_module, glob_object] = gtd_info} = {gs & gs_gtd_infos = gs_gtd_infos, gs_modules = gs_modules} get_kind module_index type_index gs=:{gs_td_infos} # (kind, gs_td_infos) = kindOfTypeDef module_index type_index gs_td_infos = (kind, {gs & gs_td_infos = gs_td_infos}) build_isomap_functions :: ![Global Index] !*GenericState -> (![(Index, FunDef)], !*GenericState) build_isomap_functions [] gs = ([], gs) build_isomap_functions [{glob_module, glob_object}:td_indexes] gs # (funs1, gs) = build_isomap_function glob_module glob_object gs # (funs2, gs) = build_isomap_functions td_indexes gs = (funs1 ++ funs2, gs) build_isomap_function module_index type_def_index gs # (kind, gs) = get_kind module_index type_def_index gs | kind == KindConst // types of kind * do not need isomaps - they are identity = ([], gs) # (group_index, gs) = get_group module_index type_def_index gs # {gs_modules, gs_gtd_infos} = gs # (type_def=:{td_name}, gs_modules) = getTypeDef module_index type_def_index gs_modules # (GTDI_Generic {gtr_isomap, gtr_isomap_to, gtr_isomap_from}, gs_gtd_infos) = gs_gtd_infos![module_index, type_def_index] # gs = { gs & gs_gtd_infos = gs_gtd_infos, gs_modules = gs_modules } # (from_fun_def, from_fun_index, gs) = buildIsomapFromTo IsoFrom gtr_isomap_from group_index module_index type_def_index gs # (to_fun_def, to_fun_index, gs) = buildIsomapFromTo IsoTo gtr_isomap_to group_index module_index type_def_index gs # (rec_fun_def, rec_fun_index, gs) = buildIsomapForTypeDef gtr_isomap group_index module_index type_def gtr_isomap_from gtr_isomap_to gs # funs = [ (from_fun_index, from_fun_def), (to_fun_index, to_fun_def), (rec_fun_index, rec_fun_def) ] = (funs, gs) //---> from_fun_def //---> ("build isomap for", td_name, module_index, type_def_index) collect_groups :: !Index ![(Index, FunDef)] !*{[Index]} -> !*{[Index]} collect_groups first_group_index [] groups = groups collect_groups first_group_index [(fun_index, fun=:{fun_symb, fun_info={fi_group_index}}):funs] groups # (group, groups) = groups ! [fi_group_index - first_group_index] # groups = {groups & [fi_group_index - first_group_index] = [fun_index:group]} //---> ("add fun " +++ fun_symb.id_name +++ " "+++ toString fun_index +++ // " to group " +++ toString fi_group_index) = collect_groups first_group_index funs groups get_group :: !Index !Index !*GenericState -> (!Index, !*GenericState) get_group module_index type_def_index gs=:{gs_gtd_infos} #! (gtd_info,gs_gtd_infos) = gs_gtd_infos![module_index, type_def_index] #! gt = case gtd_info of (GTDI_Generic gt) -> gt _ -> abort "no generic representation for a type\n" | gt.gtr_isomap_group <> NoIndex // group index already allocated = (gt.gtr_isomap_group, { gs & gs_gtd_infos = gs_gtd_infos}) //---> ("group for type already exists", module_index, type_def_index, gt.gtr_isomap_group) # (group_index, gs=:{gs_td_infos, gs_gtd_infos}) = newGroupIndex {gs & gs_gtd_infos = gs_gtd_infos} #! (type_def_info, gs_td_infos) = gs_td_infos ! [module_index, type_def_index] #! gs_gtd_infos = update_group group_index type_def_info.tdi_group gs_gtd_infos = (group_index, { gs & gs_gtd_infos = gs_gtd_infos, gs_td_infos = gs_td_infos}) //---> ("type group of type ", module_index, type_def_index, type_def_info.tdi_group_nr) // Sjaak ... update_group :: !Index ![GlobalIndex] !*GenericTypeDefInfos -> !*GenericTypeDefInfos update_group group_index [] gtd_infos = gtd_infos update_group group_index [{gi_module, gi_index}:type_def_global_indexes] gtd_infos #! (gtd_info, gtd_infos) = gtd_infos ! [gi_module, gi_index] #! gtd_info = case gtd_info of (GTDI_Generic gt) | gt.gtr_isomap_group <> NoIndex -> abort "sanity check: updating already updated group\n" -> GTDI_Generic {gt & gtr_isomap_group = group_index } _ -> gtd_info #! gtd_infos = {gtd_infos & [gi_module, gi_index] = gtd_info} = update_group group_index type_def_global_indexes gtd_infos buildIsomapsForGenerics :: !*GenericState -> (![FunDef], ![Group], !*GenericState) buildIsomapsForGenerics gs = build_modules 0 gs where build_modules module_index gs=:{gs_modules} #! num_modules = size gs_modules | module_index == num_modules = ([], [], gs) # (common_defs, gs_modules) = gs_modules ! [module_index] # {com_generic_defs} = common_defs # com_generic_defs = {g \\ g <-: com_generic_defs} // make unique copy # (new_funs, new_groups, com_generic_defs, gs) = build_isomaps module_index 0 com_generic_defs {gs & gs_modules = gs_modules} # (funs, groups, gs) = build_modules (inc module_index) gs # {gs_modules} = gs # gs_modules = { gs_modules & [module_index] = {common_defs & com_generic_defs = com_generic_defs}} = (new_funs ++ funs, new_groups ++ groups, {gs & gs_modules = gs_modules}) build_isomaps module_index generic_index generic_defs gs #! num_generic_defs = size generic_defs | generic_index == num_generic_defs = ([], [], generic_defs, gs) # (new_funs, new_groups, generic_defs, gs) = build_isomap module_index generic_index generic_defs gs # (funs, groups, generic_defs, gs) = build_isomaps module_index (inc generic_index) generic_defs gs = (new_funs ++ funs, new_groups ++ groups, generic_defs, gs) build_isomap module_index generic_index generic_defs gs # (generic_def=:{gen_name, gen_type}, generic_defs) = generic_defs ! [generic_index] # (fun_index, group_index, gs) = newFunAndGroupIndex gs # def_sym = { ds_ident = {id_name="isomap_"+++gen_name.id_name, id_info = nilPtr}, ds_index = fun_index, ds_arity = gen_type.gt_arity } # generic_defs = {generic_defs & [generic_index] = {generic_def & gen_isomap = def_sym}} # (fun_def, _, gs) = buildIsomapForGeneric def_sym group_index generic_def gs //# (fun_def, gs) = build_undef_fun def_sym group_index gs # group = {group_members = [fun_index]} = ([fun_def], [group], generic_defs, gs) where build_undef_fun def_sym group gs=:{gs_heaps, gs_predefs} # (fun_def, gs_heaps) = buildUndefFunction def_sym group gs_predefs gs_heaps = (fun_def, {gs & gs_heaps = gs_heaps}) // generate instances buildInstances :: !*GenericState -> (![FunDef], ![Group], !*GenericState) buildInstances gs = build_modules 0 gs where build_modules :: !Index !*GenericState -> (![FunDef], ![Group], !*GenericState) build_modules module_index gs=:{gs_modules} #! num_modules = size gs_modules | module_index == num_modules = ([], [], gs) # (common_defs, gs_modules) = gs_modules ! [module_index] # {com_instance_defs} = common_defs # com_instance_defs = {i \\ i <-: com_instance_defs} // make unique copy # (new_funs, new_groups, com_instance_defs, gs) = build_instances module_index 0 com_instance_defs {gs & gs_modules = gs_modules} # (funs, groups, gs) = build_modules (inc module_index) gs # {gs_modules} = gs # gs_modules = { gs_modules & [module_index] = {common_defs & com_instance_defs = com_instance_defs}} = (new_funs ++ funs, new_groups ++ groups, {gs & gs_modules = gs_modules}) build_instances :: !Index !Index !*{#ClassInstance} !*GenericState -> (![FunDef], ![Group], !*{#ClassInstance}, !*GenericState) build_instances module_index instance_index instance_defs gs #! num_instance_defs = size instance_defs | instance_index == num_instance_defs = ([], [], instance_defs, gs) # (new_funs, new_groups, instance_defs, gs) = build_instance module_index instance_index instance_defs gs # (funs, groups, instance_defs, gs) = build_instances module_index (inc instance_index) instance_defs gs = (new_funs ++ funs, new_groups ++ groups, instance_defs, gs) build_instance :: !Index !Index !*{#ClassInstance} !*GenericState -> (![FunDef], ![Group], !*{#ClassInstance}, !*GenericState) build_instance module_index instance_index instance_defs gs=:{gs_modules} # (instance_def, instance_defs) = instance_defs ! [instance_index] | not instance_def.ins_is_generic = ([], [], instance_defs, gs) | instance_def.ins_generate #! (fun_def, fun_def_sym, gs) = build_instance_fun instance_def gs #! instance_def = { instance_def & ins_members = {fun_def_sym} } #! instance_defs = {instance_defs & [instance_index] = instance_def} # (dcl_fun_index, gs) = get_dcl_member_index instance_index gs with get_dcl_member_index icl_instance_index gs=:{gs_main_dcl_module_n} // # ({dcl_common}, gs_dcl_modules) = gs_dcl_modules![gs_main_dcl_module_n] // # gs = {gs & gs_dcl_modules = gs_dcl_modules} // # dcl_index = case dcl_conversions of # dcl_index = NoIndex /* No -> NoIndex Yes conversion_table # instance_table = conversion_table.[cInstanceDefs] # dcl_instance_index = find_dcl_instance_index icl_instance_index 0 instance_table | dcl_instance_index == NoIndex -> NoIndex | otherwise # dcl_instance = dcl_common.com_instance_defs.[dcl_instance_index] # dcl_index = dcl_instance.ins_members.[0].ds_index -> dcl_index */ = (dcl_index, gs) where find_dcl_instance_index icl_instance_index index instance_table | index == size instance_table = NoIndex | instance_table.[index] == icl_instance_index = index | otherwise = find_dcl_instance_index icl_instance_index (inc index) instance_table # gs = case dcl_fun_index of NoIndex -> gs _ // # gs = update_dcl_icl_conversions dcl_fun_index fun_def_sym.ds_index gs // # gs = update_dcl_fun_conversions module_index dcl_fun_index fun_def_sym.ds_index gs -> gs /* with update_dcl_icl_conversions dcl_index icl_index gs=:{gs_opt_dcl_icl_conversions=No} = gs update_dcl_icl_conversions dcl_index icl_index gs=:{gs_opt_dcl_icl_conversions=Yes cs} #! (table_size, cs) = usize cs | dcl_index < table_size = {gs & gs_opt_dcl_icl_conversions=Yes {cs & [dcl_index] = icl_index}} //---> ("update dcl-to-icl conversion table", dcl_index, icl_index) = {gs & gs_opt_dcl_icl_conversions=Yes cs} //---> ("update dcl-to-icl conversion table: index does not fit", dcl_index, icl_index) update_dcl_fun_conversions module_index dcl_index icl_index gs=:{gs_dcl_modules} # (dcl_module=:{dcl_conversions}, gs_dcl_modules) = gs_dcl_modules ! [module_index] # dcl_conversions = case dcl_conversions of No -> No Yes table # fun_table = table.[cFunctionDefs] # (size_fun_table, fun_table) = usize fun_table | dcl_index < size_fun_table # fun_table = {x \\ x <-: fun_table} # fun_table = {fun_table & [dcl_index] = icl_index} -> Yes {{x\\x<-:table} & [cFunctionDefs] = fun_table} | otherwise -> Yes table # dcl_module = { dcl_module & dcl_conversions = dcl_conversions} = {gs & gs_dcl_modules = {gs_dcl_modules & [module_index] = dcl_module }} */ = ([fun_def], [{group_members = [fun_def_sym.ds_index]}], instance_defs, gs) | supportPartialInstances && instance_def.ins_partial #! (fun_def, fun_def_sym, gs) = build_instance_fun instance_def gs #! (instance_def, ins_fun_index, ins_fun_def, gs) = move_instance instance_def gs #! instance_defs = {instance_defs & [instance_index] = instance_def} #! (ins_fun_def, gs) = add_generic_alternative ins_fun_def fun_def_sym gs = ( [fun_def, ins_fun_def], [{group_members = [fun_def_sym.ds_index]}, {group_members = [ins_fun_index]}], instance_defs, gs) //---> ("build partial instance", instance_def.ins_ident, instance_def.ins_type) | otherwise = ([], [], instance_defs, gs) add_generic_alternative ins_fun_def gen_fun_ds gs=:{gs_heaps, gs_main_dcl_module_n} # (TransformedBody tb) = ins_fun_def.fun_body # (Case cas) = tb.tb_rhs #! (arg_exprs, new_tb_args, gs_heaps) = buildBoundVarExprs tb.tb_args gs_heaps #! (app_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n gen_fun_ds arg_exprs gs_heaps #! case_expr = Case {cas & case_default = (Yes app_expr)} #! ins_fun_def = { ins_fun_def & fun_body = TransformedBody {tb & tb_rhs=case_expr, tb_args = new_tb_args} , fun_info = { ins_fun_def.fun_info & fi_calls = [ FunCall gen_fun_ds.ds_index NotALevel : ins_fun_def.fun_info.fi_calls ] } } = (ins_fun_def, {gs & gs_heaps = gs_heaps}) //---> ("created generic alterntaive for " +++ ins_fun_def.fun_symb.id_name) move_instance instance_def=:{ins_members, ins_pos} gs=:{gs_main_dcl_module_n} # (new_fun_index, new_fun_group, gs=:{gs_fun_defs, gs_predefs, gs_heaps}) = newFunAndGroupIndex gs # ins_fun_index = ins_members.[0].ds_index # (ins_fun_def, gs_fun_defs) = gs_fun_defs ! [ins_fun_index] // set new indexes in the function # new_ins_fun_def = { ins_fun_def //& fun_index = new_fun_index & fun_info = {ins_fun_def.fun_info & fi_group_index = new_fun_group} } #! new_member = {ins_members.[0] & ds_index = new_fun_index} #! instance_def = {instance_def & ins_members = {new_member}} // build a dummy function and set it at the old position #! (undef_expr, gs_heaps) = buildUndefFunApp [] gs_predefs gs_heaps #! (arg_vars, gs_heaps) = mapSt buildFreeVar0 ["v" +++ toString i \\ i <- [1..ins_fun_def.fun_arity]] gs_heaps # {fun_symb, fun_arity, fun_info, fun_type, fun_pos} = ins_fun_def #! dummy_def_sym = { ds_ident = fun_symb , ds_arity = fun_arity , ds_index = ins_fun_index } #! dummy_fun_def = makeFunction dummy_def_sym fun_info.fi_group_index arg_vars undef_expr fun_type [] gs_main_dcl_module_n fun_pos #! gs_fun_defs = {gs_fun_defs & [ins_fun_index] = dummy_fun_def} = (instance_def, new_fun_index, new_ins_fun_def, {gs & gs_fun_defs = gs_fun_defs, gs_heaps = gs_heaps}) build_instance_fun instance_def gs=:{gs_modules} # {ins_class, ins_generic} = instance_def # (class_def, gs_modules) = getClassDef ins_class.glob_module ins_class.glob_object.ds_index gs_modules # (member_def, gs_modules) = getMemberDef ins_class.glob_module class_def.class_members.[0].ds_index gs_modules # (generic_def, gs_modules) = getGenericDef ins_generic.glob_module ins_generic.glob_object gs_modules # (fun_index, group_index, gs) = newFunAndGroupIndex {gs & gs_modules=gs_modules} # fun_def_sym = { ds_ident = instance_def.ins_ident, ds_index = fun_index, ds_arity = member_def.me_type.st_arity } //# (fun_def, gs) = build_dummy_instance fun_def_sym group_index gs # (fun_def, gs) = buildInstance fun_def_sym group_index instance_def generic_def gs = (fun_def, fun_def_sym, gs) build_dummy_instance fun_def_sym group_index gs=:{gs_predefs, gs_heaps} # (fun_def, gs_heaps) = buildUndefFunction fun_def_sym group_index gs_predefs gs_heaps = (fun_def, {gs & gs_heaps = gs_heaps}) // generate kind star instances buildKindConstInstances :: !*GenericState -> (![FunDef], ![Group], !*GenericState) buildKindConstInstances gs = build_modules 0 gs where build_modules :: !Index !*GenericState -> (![FunDef], ![Group], !*GenericState) build_modules module_index gs=:{gs_modules, gs_main_dcl_module_n} #! num_modules = size gs_modules | module_index == num_modules = ([], [], {gs & gs_modules = gs_modules}) # (new_funs, new_groups, instance_defs, gs) = build_instances module_index 0 {gs & gs_modules = gs_modules} # (funs, groups, gs) = build_modules (inc module_index) gs # {gs_modules} = gs // add instances /* # (common_defs=:{com_instance_defs}, gs_modules) = gs_modules ! [module_index] # com_instance_defs = arrayPlusList com_instance_defs instance_defs # gs_modules = { gs_modules & [module_index] = {common_defs & com_instance_defs = com_instance_defs}} */ # (common_defs=:{com_instance_defs}, gs_modules) = gs_modules ! [gs_main_dcl_module_n] # com_instance_defs = arrayPlusList com_instance_defs instance_defs # gs_modules = { gs_modules & [gs_main_dcl_module_n] = {common_defs & com_instance_defs = com_instance_defs}} = (new_funs ++ funs, new_groups ++ groups, {gs & gs_modules = gs_modules}) build_instances :: !Index !Index !*GenericState -> (![FunDef], ![Group], ![ClassInstance], !*GenericState) build_instances module_index instance_index gs=:{gs_modules} # ({com_instance_defs}, gs_modules) = gs_modules ! [module_index] #! num_instance_defs = size com_instance_defs # gs = { gs & gs_modules = gs_modules } | instance_index == num_instance_defs = ([], [], [], gs) # (new_funs, new_groups, new_instance_defs, gs) = build_instance module_index instance_index gs # (funs, groups, instance_defs, gs) = build_instances module_index (inc instance_index) gs = (new_funs ++ funs, new_groups ++ groups, new_instance_defs ++ instance_defs, gs) build_instance :: !Index !Index !*GenericState -> (![FunDef], ![Group], ![ClassInstance], !*GenericState) build_instance module_index instance_index gs=:{gs_modules, gs_td_infos, gs_heaps} # (instance_def, gs_modules) = getInstanceDef module_index instance_index gs_modules # { ins_ident, ins_type, ins_pos, ins_generate, ins_is_generic, ins_generic} = instance_def | not (ins_is_generic) = ([], [], [], {gs & gs_td_infos = gs_td_infos, gs_modules = gs_modules, gs_heaps = gs_heaps}) # it_type = hd ins_type.it_types #! (kind, gs_td_infos) = kindOfType it_type gs_td_infos | kind == KindConst = ([], [], [], { gs & gs_td_infos = gs_td_infos, gs_modules = gs_modules, gs_heaps = gs_heaps}) # (KindArrow kind_args) = kind # (generic_def, gs_modules) = getGenericDef ins_generic.glob_module ins_generic.glob_object gs_modules # (ok, kind_star_class_def_sym) = getGenericClassForKind generic_def KindConst | not ok = abort "no class for kind *" # (oks, arg_class_def_syms) = unzip (map (getGenericClassForKind generic_def) kind_args) | not (and oks) = abort "no class for an agrument kind" # (kind_star_class_def, gs_modules) = getClassDef ins_generic.glob_module kind_star_class_def_sym.ds_index gs_modules # (member_def, gs_modules) = getMemberDef ins_generic.glob_module kind_star_class_def.class_members.[0].ds_index gs_modules # glob_kind_star_class_def_sym = {glob_module=ins_generic.glob_module, glob_object=kind_star_class_def_sym} # glob_arg_class_def_syms = [{glob_module=ins_generic.glob_module, glob_object=c} \\ c <- arg_class_def_syms] # (new_ins_type, gs_heaps) = //build_instance_type ins_type kind {glob_module=ins_generic.glob_module, glob_object=kind_star_class_def_sym} gs_heaps build_instance_type1 ins_type glob_arg_class_def_syms glob_kind_star_class_def_sym gs_heaps # gs = {gs & gs_modules=gs_modules, gs_td_infos = gs_td_infos, gs_heaps = gs_heaps} # (fun_index, group_index, gs) = newFunAndGroupIndex gs # fun_def_sym = { ds_ident = kind_star_class_def.class_name, // kind star name ds_index = fun_index, ds_arity = member_def.me_type.st_arity } //# (fun_def, gs) = build_dummy_instance fun_def_sym group_index gs # generic_def_sym = { ds_ident=generic_def.gen_name, ds_index=ins_generic.glob_object, ds_arity=0 } # (fun_def, gs) = //buildKindConstInstance fun_def_sym group_index ins_generic.glob_module generic_def_sym kind gs buildKindConstInstance1 fun_def_sym group_index ins_generic.glob_module generic_def_sym kind_args gs # new_instance_def = { ins_class = {glob_module = ins_generic.glob_module, glob_object = kind_star_class_def_sym}, ins_ident = kind_star_class_def.class_name, ins_type = new_ins_type, ins_members = {fun_def_sym}, ins_specials = SP_None, ins_pos = ins_pos, ins_is_generic = True, ins_generate = False, ins_partial = False, ins_generic = ins_generic } //---> fun_def = ([fun_def], [{group_members = [fun_index]}], [new_instance_def], gs) build_dummy_instance fun_def_sym group_index gs=:{gs_predefs, gs_heaps} # (fun_def, gs_heaps) = buildUndefFunction fun_def_sym group_index gs_predefs gs_heaps = (fun_def, {gs & gs_heaps = gs_heaps}) build_instance_type ins_type=:{it_vars, it_types, it_context} (KindArrow kinds) class_glob_def_sym heaps #! type_var_names = ["a" +++ toString i \\ i <- [1 .. (length kinds)]] #! (type_vars, heaps) = mapSt buildTypeVar type_var_names heaps #! type_var_types = [TV tv \\ tv <- type_vars] #! new_type_args = [makeAType t TA_Multi \\ t <- type_var_types] #! new_type = fill_type_args (hd it_types) new_type_args with fill_type_args (TA type_symb_ident=:{type_arity} type_args) new_type_args #! type_arity = type_arity + length new_type_args #! type_args = type_args ++ new_type_args = TA {type_symb_ident & type_arity = type_arity} type_args fill_type_args TArrow [arg_type, res_type] = arg_type --> res_type fill_type_args (TArrow1 arg_type) [res_type] = arg_type --> res_type #! (new_contexts, heaps) = mapSt (build_type_context class_glob_def_sym) type_var_types heaps #! new_ins_type = { ins_type & it_vars = it_vars ++ type_vars, it_types = [new_type], it_context = it_context ++ new_contexts } = (new_ins_type, heaps) //---> new_ins_type build_instance_type1 ins_type=:{it_vars, it_types, it_context} arg_class_def_syms class_glob_def_sym heaps #! type_var_names = ["a" +++ toString i \\ i <- [1 .. (length arg_class_def_syms)]] #! (type_vars, heaps) = mapSt buildTypeVar type_var_names heaps #! type_var_types = [TV tv \\ tv <- type_vars] #! new_type_args = [makeAType t TA_Multi \\ t <- type_var_types] #! new_type = fill_type_args (hd it_types) new_type_args with fill_type_args (TA type_symb_ident=:{type_arity} type_args) new_type_args #! type_arity = type_arity + length new_type_args #! type_args = type_args ++ new_type_args = TA {type_symb_ident & type_arity = type_arity} type_args fill_type_args TArrow [arg_type, res_type] = arg_type --> res_type fill_type_args (TArrow1 arg_type) [res_type] = arg_type --> res_type #! (new_contexts, heaps) = mapSt build_type_context1 (zip2 arg_class_def_syms type_var_types) heaps #! new_ins_type = { ins_type & it_vars = it_vars ++ type_vars, it_types = [new_type], it_context = it_context ++ new_contexts } = (new_ins_type, heaps) //---> new_ins_type build_type_var name heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} # (tv_info_ptr, th_vars) = newPtr TVI_Empty th_vars # type_var = { tv_name = {id_name = name, id_info = nilPtr}, tv_info_ptr = tv_info_ptr } = ( type_var, {heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}}) build_type_context class_glob_def_sym type heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # type_context = { tc_class = class_glob_def_sym , tc_types = [type] , tc_var = var_info_ptr } = (type_context, {heaps & hp_var_heap = hp_var_heap}) build_type_context1 (class_def_sym, type) heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # type_context = { tc_class = class_def_sym , tc_types = [type] , tc_var = var_info_ptr } = (type_context, {heaps & hp_var_heap = hp_var_heap}) // for all generic instances determine and set types // of their functions determineMemberTypes :: !Index !Index !*GenericState -> !*GenericState determineMemberTypes module_index ins_index gs=:{gs_modules, gs_fun_defs, gs_heaps=gs_heaps=:{hp_var_heap, hp_type_heaps}, gs_dcl_modules, gs_main_dcl_module_n} #! (num_modules, gs_modules) = usize gs_modules | module_index == num_modules = {gs & gs_modules = gs_modules} #! (common_defs=:{com_instance_defs}, gs_modules) = gs_modules![module_index] | ins_index == size com_instance_defs = determineMemberTypes (inc module_index) 0 {gs & gs_modules = gs_modules} #! (instance_def, com_instance_defs) = com_instance_defs![ins_index] | not instance_def.ins_is_generic = determineMemberTypes module_index (inc ins_index) {gs & gs_modules = gs_modules} #! gs = determine_member_type module_index ins_index instance_def {gs & gs_modules = gs_modules} = determineMemberTypes module_index (inc ins_index) gs where determine_member_type module_index ins_index {ins_ident, ins_class, ins_type, ins_members} gs=:{ gs_modules, gs_fun_defs, gs_heaps=gs_heaps=:{hp_var_heap, hp_type_heaps}, gs_dcl_modules, gs_main_dcl_module_n, gs_opt_dcl_icl_conversions, gs_error} #! (class_def, gs_modules) = getClassDef ins_class.glob_module ins_class.glob_object.ds_index gs_modules #! (member_def, gs_modules) = getMemberDef ins_class.glob_module class_def.class_members.[0].ds_index gs_modules #! {me_type, me_class_vars} = member_def // determine type of the instance function #! (symbol_type, _, hp_type_heaps, _, gs_error) = determineTypeOfMemberInstance me_type me_class_vars ins_type SP_None hp_type_heaps No gs_error #! (st_context, hp_var_heap) = initializeContextVariables symbol_type.st_context hp_var_heap #! symbol_type = {symbol_type & st_context = st_context} // determine the instance function index (in icl or dcl) #! fun_index = ins_members.[0].ds_index | fun_index == NoIndex = abort "no generic instance function\n" // update the instance function | module_index == gs_main_dcl_module_n // icl module #! (fun_def, gs_fun_defs) = gs_fun_defs![fun_index] #! fun_def = { fun_def & fun_type = Yes symbol_type } #! gs_fun_defs = {gs_fun_defs & [fun_index] = fun_def} // update corresponding DCL function type, which is empty at the moment // #! (gs_dcl_modules) = gs_dcl_modules ! [gs_main_dcl_module_n] #! (dcl_fun_index, gs_opt_dcl_icl_conversions) = find_dcl_fun_index fun_index gs_opt_dcl_icl_conversions// XXX with find_dcl_fun_index icl_fun_index No = (NoIndex /*abort "no dcl_icl conversions table\n"*/, No) find_dcl_fun_index icl_fun_index (Yes table) #! table1 = {x\\x<-:table} = find_index 0 icl_fun_index table find_index i index table #! (size_table, table) = usize table | i == size_table = (NoIndex /*abort ("not found dcl function index " +++ toString index)*/, Yes table) #! (x, table) = table ! [i] | x == index = (i /*abort ("found dcl function index " +++ toString index +++ " " +++ toString i)*/, Yes table) = find_index (inc i) index table #! gs_dcl_modules = case dcl_fun_index of NoIndex -> gs_dcl_modules _ -> update_dcl_fun_type gs_main_dcl_module_n dcl_fun_index symbol_type gs_dcl_modules = { gs & gs_modules = gs_modules , gs_fun_defs = gs_fun_defs , gs_dcl_modules = gs_dcl_modules , gs_opt_dcl_icl_conversions = gs_opt_dcl_icl_conversions , gs_heaps = {gs_heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap} , gs_error = gs_error } | otherwise // dcl module //---> ("update dcl instance function", ins_ident, module_index, ins_index, symbol_type) #! gs_dcl_modules = update_dcl_fun_type module_index fun_index symbol_type gs_dcl_modules = { gs & gs_modules = gs_modules , gs_dcl_modules = gs_dcl_modules , gs_heaps = {gs_heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap} , gs_error = gs_error } update_dcl_fun_type module_index fun_index symbol_type dcl_modules # (dcl_module=:{dcl_functions}, dcl_modules) = dcl_modules ! [module_index] # (dcl_fun, dcl_functions) = dcl_functions ! [fun_index] # dcl_fun = { dcl_fun & ft_arity = symbol_type.st_arity , ft_type = symbol_type } # dcl_functions = {{x \\ x <-: dcl_functions} & [fun_index] = dcl_fun} # dcl_module={dcl_module & dcl_functions = dcl_functions} = {dcl_modules & [module_index] = dcl_module} kindOfTypeDef :: Index Index !*TypeDefInfos -> (!TypeKind, !*TypeDefInfos) kindOfTypeDef module_index td_index td_infos #! ({tdi_kinds}, td_infos) = td_infos![module_index, td_index] | isEmpty tdi_kinds = (KindConst, td_infos) = (KindArrow (tdi_kinds/* ++ [KindConst]*/), td_infos) kindOfType :: !Type !*TypeDefInfos -> (!TypeKind, !*TypeDefInfos) kindOfType (TA type_cons args) td_infos #! {glob_object,glob_module} = type_cons.type_index #! ({tdi_kinds}, td_infos) = td_infos![glob_module,glob_object] #! kinds = drop (length args) tdi_kinds | isEmpty kinds = (KindConst, td_infos) = (KindArrow (kinds/* ++ [KindConst]*/), td_infos) kindOfType TArrow td_infos = (KindArrow [KindConst, KindConst/*, KindConst*/], td_infos) kindOfType (TArrow1 _) td_infos = (KindArrow [KindConst/*, KindConst*/], td_infos) kindOfType (TV _) td_infos = (KindConst, td_infos) kindOfType (GTV _) td_infos = (KindConst, td_infos) kindOfType (TQV _) td_infos = (KindConst, td_infos) kindOfType _ td_infos = (KindConst, td_infos) buildClassDef :: !Index !Index !Index !GenericDef !TypeKind !*GenericState -> (!ClassDef, !MemberDef!, !GenericDef, *GenericState) buildClassDef module_index class_index member_index generic_def=:{gen_name, gen_classes} kind gs=:{gs_heaps} #! ident = makeIdent (gen_name.id_name +++ ":" +++ (toString kind)) #! class_ds={ds_ident=ident, ds_index=class_index, ds_arity=0} #! (class_var, gs_heaps) = build_class_var gs_heaps #! (member_def, class_contexts, gs_heaps) = build_member module_index class_index member_index class_var class_ds generic_def gs_heaps #! class_def = build_class module_index class_index member_index class_var kind ident generic_def member_def class_contexts #! generic_def = { generic_def & gen_classes = [{gci_kind=kind,gci_class=class_ds}:gen_classes]} = (class_def, member_def, generic_def, {gs & gs_heaps = gs_heaps}) //---> ("generated class " +++ ident.id_name) where build_class_var heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} #! (class_var, th_vars) = freshTypeVar (makeIdent "class_var") th_vars =(class_var, {heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}}) build_member module_index class_index member_index class_var class_ds=:{ds_ident} generic_def=:{gen_type} heaps=:{hp_var_heap, hp_type_heaps} #! (type_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap #! (tc_var_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap #! type_context = { tc_class = {glob_module = module_index, glob_object=class_ds} , tc_types = [ TV class_var ] , tc_var = tc_var_ptr } #! (member_type, class_contexts, hp_type_heaps, hp_var_heap) = buildMemberType2 generic_def kind class_var hp_type_heaps hp_var_heap //#! member_type = { member_type & st_context = [type_context : gen_type.gt_type.st_context] } #! member_type = { member_type & st_context = [type_context : member_type.st_context] } #! member_def = { me_symb = ds_ident, // same name as class me_class = {glob_module = module_index, glob_object = class_index}, me_offset = 0, me_type = member_type, me_type_ptr = type_ptr, // empty me_class_vars = [class_var], // the same variable as in the class me_pos = generic_def.gen_pos, me_priority = NoPrio } //---> ("member_type", member_type) = (member_def, class_contexts, {heaps & hp_type_heaps = hp_type_heaps, hp_var_heap = hp_var_heap}) build_class module_index class_index member_index class_var kind ident generic_def=:{gen_pos} member_def=:{me_type} class_contexts #! class_member = {ds_ident=ident, ds_index = member_index, ds_arity = me_type.st_arity} #! class_dictionary = { ds_ident = ident, ds_arity = 0, ds_index = NoIndex/*index in the type def table, filled in later*/ } #! class_def = { class_name = ident, class_arity = 1, class_args = [class_var], class_context = class_contexts, class_pos = gen_pos, class_members = createArray 1 class_member, class_cons_vars = 0, // dotted class variables class_dictionary = class_dictionary, class_arg_kinds = [kind] } = class_def currySymbolType1 :: !SymbolType !String !*TypeHeaps -> (!AType, ![AttributeVar], ![AttrInequality], !*TypeHeaps) currySymbolType1 {st_args=[], st_result} attr_var_name th = (st_result, [], [], th) currySymbolType1 {st_args, st_result} attr_var_name th=:{th_attrs} // TA_None indicates top-level attribute #! (at, attr_vars, ais, index, th_attrs) = curry_type st_args st_result TA_None 0 th_attrs = (at, attr_vars, ais, {th & th_attrs = th_attrs}) where curry_type [] type cum_attr index th_attrs = (type, [], [], index, th_attrs) curry_type [at=:{at_attribute}] type cum_attr index th_attrs #! t = makeAType (at --> type) (if (cum_attr == TA_None) TA_Multi cum_attr) = (t, [], [], index, th_attrs) curry_type [at=:{at_attribute}:ats] type cum_attr index th_attrs #! (next_cum_attr, avs1, ais1, index, th_attrs) = combine_attributes at_attribute cum_attr index th_attrs #! (res_type, avs2, ais2, index, th_attrs) = curry_type ats type next_cum_attr index th_attrs #! t = makeAType (at --> res_type) cum_attr = (t, avs1 ++ avs2, ais1 ++ ais2, index, th_attrs) combine_attributes TA_Unique cum_attr index th_attrs = (TA_Unique, [], [], index, th_attrs) combine_attributes (TA_Var av) (TA_Var cum_av) index th_attrs #! (new_av, th_attrs) = freshAttrVar (makeIdent (attr_var_name+++ /*"_"+++*/ toString index)) th_attrs #! ais = [ {ai_offered=new_av, ai_demanded=av}, {ai_offered=new_av, ai_demanded=cum_av}] = (TA_Var new_av, [new_av], ais, (inc index), th_attrs) combine_attributes (TA_Var av) TA_None index th_attrs #! (new_av, th_attrs) = freshAttrVar (makeIdent (attr_var_name+++ /*"_"+++*/ toString index)) th_attrs = (TA_Var new_av, [new_av], [{ai_offered=new_av, ai_demanded=av}], (inc index), th_attrs) combine_attributes (TA_Var _) cum_attr index th_attrs = (cum_attr, [], [], index, th_attrs) combine_attributes _ (TA_Var cum_av) index th_attrs #! (new_av, th_attrs) = freshAttrVar (makeIdent (attr_var_name+++ /*"_"+++*/ toString index)) th_attrs = (TA_Var new_av, [new_av], [{ai_offered=new_av, ai_demanded=cum_av}], (inc index), th_attrs) combine_attributes _ TA_None index th_attrs #! (new_av, th_attrs) = freshAttrVar (makeIdent (attr_var_name+++ /*"_"+++*/ toString index)) th_attrs = (TA_Var new_av, [new_av], [], (inc index), th_attrs) combine_attributes _ cum_attr index th_attrs = (cum_attr, [], [], index, th_attrs) currySymbolType2 :: !SymbolType !String !*TypeHeaps -> (!SymbolType, !*TypeHeaps) currySymbolType2 st attr_var_name th #! (atype, avs, ais, th) = currySymbolType1 st attr_var_name th #! st = { st & st_args = [] , st_arity = 0 , st_result = atype , st_attr_env = st.st_attr_env ++ ais , st_attr_vars = st.st_attr_vars ++ avs } = (st, th) buildCurriedType :: ![AType] !AType !TypeAttribute ![AttrInequality] ![AttributeVar] !String !Int !*AttrVarHeap -> (!AType, ![AttrInequality], ![AttributeVar], !Int, !*AttrVarHeap) buildCurriedType [] type cum_attr attr_env attr_vars attr_var_name attr_store th_attrs = (type, attr_env, attr_vars, attr_store, th_attrs) buildCurriedType [at=:{at_attribute}] type cum_attr attr_env attr_vars attr_var_name attr_store th_attrs # atype = {at_attribute = cum_attr , at_type = at --> type } = (atype, attr_env, attr_vars, attr_store, th_attrs) buildCurriedType [at=:{at_attribute}:ats] type cum_attr attr_env attr_vars attr_var_name attr_store th_attrs # (next_cum_attr, new_attr_env, attr_vars, attr_store, th_attrs) = combine_attributes at_attribute cum_attr attr_env attr_vars attr_store th_attrs (res_type, attr_env, attr_vars, attr_store, th_attrs) = buildCurriedType ats type next_cum_attr attr_env attr_vars attr_var_name attr_store th_attrs # atype = {at_attribute = cum_attr , at_type = at --> res_type } = (atype, attr_env, attr_vars, attr_store, th_attrs) where combine_attributes TA_Unique cum_attr attr_env attr_vars attr_store th_attrs = (TA_Unique, attr_env, attr_vars, attr_store, th_attrs) combine_attributes (TA_Var attr_var) (TA_Var cum_attr_var) attr_env attr_vars attr_store th_attrs #! (new_attr_var, th_attrs) = freshAttrVar (makeIdent (attr_var_name +++ toString attr_store)) th_attrs # attr_env = [ { ai_demanded = cum_attr_var,ai_offered = new_attr_var } , { ai_demanded = attr_var, ai_offered = new_attr_var } : attr_env ] = ( TA_Var new_attr_var, attr_env, [new_attr_var:attr_vars], inc attr_store, th_attrs) combine_attributes (TA_Var _) cum_attr attr_env attr_vars attr_store th_attrs = (cum_attr, attr_env, attr_vars, attr_store, th_attrs) combine_attributes _ (TA_Var cum_attr_var) attr_env attr_vars attr_store th_attrs #! (new_attr_var, th_attrs) = freshAttrVar (makeIdent (attr_var_name +++ toString attr_store)) th_attrs # attr_env = [ { ai_demanded = cum_attr_var,ai_offered = new_attr_var }: attr_env] = ( TA_Var new_attr_var, attr_env, [new_attr_var:attr_vars], inc attr_store, th_attrs) combine_attributes _ cum_attr attr_env attr_vars attr_store th_attrs = (cum_attr, attr_env, attr_vars, attr_store, th_attrs) currySymbolType3 :: !SymbolType !String !*TypeHeaps -> (!SymbolType, !*TypeHeaps) currySymbolType3 st=:{st_args, st_result, st_attr_env, st_attr_vars} attr_var_name th=:{th_attrs} #! (cum_attr_var, th_attrs) = freshAttrVar (makeIdent (attr_var_name +++ "0")) th_attrs #! attr_env = foldSt (build_attr_env cum_attr_var) st_args st_attr_env #! (atype, attr_env, attr_vars, attr_store, th_attrs) = buildCurriedType st_args st_result (TA_Var cum_attr_var) attr_env st_attr_vars attr_var_name 1 th_attrs # curried_st = { st & st_args = [] , st_arity = 0 , st_result = atype , st_attr_env = attr_env , st_attr_vars = [cum_attr_var:attr_vars] } = (curried_st, {th & th_attrs = th_attrs}) //---> ("currySymbolType3", st, curried_st) where build_attr_env cum_attr_var {at_attribute=(TA_Var attr_var)} attr_env = [{ ai_demanded = attr_var, ai_offered = cum_attr_var } : attr_env ] build_attr_env cum_attr_var _ attr_env = attr_env currySymbolType4 :: !SymbolType !String !*TypeHeaps -> (!SymbolType, !*TypeHeaps) currySymbolType4 st=:{st_args, st_result, st_attr_env, st_attr_vars} attr_var_name th=:{th_attrs} #! (atype, attr_env, attr_vars, attr_store, th_attrs) = buildCurriedType st_args st_result TA_Multi st_attr_env st_attr_vars attr_var_name 1 th_attrs # curried_st = { st & st_args = [] , st_arity = 0 , st_result = atype , st_attr_env = attr_env , st_attr_vars = attr_vars } = (curried_st, {th & th_attrs = th_attrs}) //---> ("currySymbolType4", st, curried_st) // specialize generic (kind-indexed) type for a kind specializeGenericType :: !GenericDef !TypeKind !*TypeHeaps -> (!SymbolType, ![ATypeVar], ![AttributeVar], !*TypeHeaps) specializeGenericType generic_def=:{gen_name,gen_type} kind th //#! th = th ---> ("specializeSymbolType", kind, gen_type.gt_type) #! (gen_type, th) = freshGenericType gen_type th #! (agvs, gavs, th) = collect_gtv_attrs gen_type th #! (st, _, th) = build_symbol_type gen_type.gt_type agvs kind "" 1 th #! st = { st & st_vars = removeDup st.st_vars , st_attr_vars = removeDup st.st_attr_vars , st_attr_env = removeDup st.st_attr_env , st_context = removeDup st.st_context } # th = clearSymbolType st th = (st, agvs, gavs, th) //---> ("specializeGenericType result", kind, st) where // collect generic variables and withe attributes // and generic attribute variables collect_gtv_attrs :: GenericType !*TypeHeaps -> !(![ATypeVar], ![AttributeVar], !*TypeHeaps) collect_gtv_attrs {gt_type, gt_vars} th #! th = clearSymbolType gt_type th #! th = setTypeVarAttrs gt_type th #! (attributed_vars, (avs, th)) = mapSt get_attr gt_vars ([], th) = (attributed_vars, avs, th) where get_attr tv=:{tv_info_ptr} (avs, th=:{th_vars}) #! (TVI_Attribute attr, th_vars) = readPtr tv_info_ptr th_vars #! avs = case attr of (TA_Var av) -> [av:avs] _ -> avs #! th = {th & th_vars = th_vars} = ( {atv_attribute=attr, atv_variable=tv}, (avs, th)) build_symbol_type :: SymbolType ![ATypeVar] !TypeKind !String !Int !*TypeHeaps -> !(!SymbolType, ![ATypeVar], !*TypeHeaps) build_symbol_type st agvs KindConst postfix order th #! st = { st & st_vars = [atv_variable \\ {atv_variable}<- agvs] ++ st.st_vars } = (st, [], th) //---> ("build_symbol_type KindConst", st, order) build_symbol_type st agvs (KindArrow kinds) postfix order th | order > 2 = abort "kinds of order higher then 2 are not supported" //#! th = th ---> ("build_symbol_type for st", (KindArrow kinds, order, postfix), agvs, st) #! gvs = [atv_variable \\ {atv_variable} <- agvs] #! gavs = [av \\ {atv_attribute=TA_Var av} <- agvs] #! arity = length kinds // build lifting argumnents #! (args, th) = mapSt (build_arg agvs st postfix order) (zip2 kinds [1..arity]) th #! (curry_sts, atvss) = unzip args #! th = clearSymbolType st th #! th = foldSt build_gv_subst (zip2 gvs (transpose atvss)) th #! th = foldSt subst_av_for_self (st.st_attr_vars ++ gavs) th #! (new_st, th) = substituteInSymbolType st th #! th = clearSymbolType st th #! th = clearSymbolType new_st th #! new_st = { new_st & st_vars = foldr (++) (new_st.st_vars ++ gvs) [st_vars \\ {st_vars} <- curry_sts] , st_attr_vars = foldr (++) (new_st.st_attr_vars ++ gavs) [st_attr_vars \\ {st_attr_vars} <- curry_sts] //, st_attr_env = // foldr (++) new_st.st_attr_env [st_attr_env \\ {st_attr_env} <- curry_sts] , st_args = [st_result \\ {st_result} <- curry_sts] ++ new_st.st_args , st_arity = new_st.st_arity + arity , st_context = foldr (++) new_st.st_context [st_context \\ {st_context} <- curry_sts] } = (new_st, flatten atvss, th) //---> ("build_symbol_type new st", (KindArrow kinds, order), new_st) where build_gv_subst (gv=:{tv_info_ptr}, atvs) th=:{th_vars} #! type_args = [ makeAType (TV atv_variable) atv_attribute \\ {atv_variable, atv_attribute} <- atvs] #! type = (CV gv) :@: type_args #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type type) = {th & th_vars = th_vars} build_arg :: ![ATypeVar] !SymbolType !String !Int !(!TypeKind, !Int) !*TypeHeaps -> !(!(!SymbolType, ![ATypeVar]), !*TypeHeaps) build_arg agvs st postfix order (kind, arg_num) th //#! th = th ---> ("build_arg for st", (kind, arg_num, order), st) #! postfix = toString arg_num #! gavs = [av \\ {atv_attribute=TA_Var av} <- agvs] #! th = clearSymbolType st th #! th = foldSt subst_av_for_self (st.st_attr_vars ++ gavs) th #! (fresh_atvs, th) = mapSt (fresh_agv postfix) agvs th #! (fresh_st, th) = substituteInSymbolType st th #! th = clearSymbolType st th #! th = clearSymbolType fresh_st th #! fresh_avs = [av \\ {atv_attribute=TA_Var av} <- fresh_atvs] #! fresh_st = { fresh_st & st_attr_vars = fresh_st.st_attr_vars ++ fresh_avs } #! (fresh_st, forall_atvs, th) = build_symbol_type fresh_st fresh_atvs kind postfix (inc order) th //#! (curry_st, th) = currySymbolType2 fresh_st ("cur" +++ postfix) th #! (curry_st, th) = currySymbolType4 fresh_st ("cur" +++ toString order +++ postfix) th #! curry_st = case forall_atvs of [] -> curry_st forall_atvs # (atype=:{at_type}) = curry_st.st_result -> { curry_st & st_result = {atype & at_type = TFA forall_atvs at_type} , st_attr_vars = curry_st.st_attr_vars -- [av \\ {atv_attribute=TA_Var av} <- forall_atvs] , st_vars = curry_st.st_vars -- [atv_variable \\ {atv_variable} <- forall_atvs] } = ((curry_st, fresh_atvs), th) //---> ("build_arg curry_st", (kind, arg_num, order), curry_st) where fresh_agv postfix agv=:{atv_attribute, atv_variable} th=:{th_attrs, th_vars} #! (tv, th_vars) = fresh_tv atv_variable postfix th_vars #! (attr, th_attrs) = fresh_attr atv_attribute postfix th_attrs = ({agv & atv_attribute = attr, atv_variable = tv}, {th & th_vars = th_vars, th_attrs = th_attrs}) where fresh_tv {tv_name, tv_info_ptr} postfix th_vars #! name = makeIdent (tv_name.id_name +++ postfix) #! (tv, th_vars) = freshTypeVar name th_vars #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TV tv)) = (tv, th_vars) fresh_attr (TA_Unique) postfix th_attrs = (TA_Unique, th_attrs) fresh_attr (TA_Multi) postfix th_attrs = (TA_Multi, th_attrs) fresh_attr (TA_Var av=:{av_name, av_info_ptr}) postfix th_attrs #! (fresh_av, th_attrs) = freshAttrVar (makeIdent (av_name.id_name+++postfix)) th_attrs #! attr = TA_Var fresh_av #! th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr attr) = (attr, th_attrs) subst_av_for_self av=:{av_info_ptr} th=:{th_attrs} = {th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av))} buildMemberType2 :: !GenericDef !TypeKind !TypeVar !*TypeHeaps !*VarHeap -> (!SymbolType, ![TypeContext], !*TypeHeaps, !*VarHeap) buildMemberType2 generic_def=:{gen_name,gen_type} kind class_var th var_heap # (st, agvs, gavs, th) = specializeGenericType generic_def kind th #! (st, th) = replace_gvs_with_class_var st agvs class_var kind th #! (st, th) = adjust_gavs st gavs kind th #! st = { st & st_vars = removeDup st.st_vars , st_attr_vars = removeDup st.st_attr_vars , st_attr_env = removeDup st.st_attr_env , st_context = removeDup st.st_context } #! (st_context, class_contexts, var_heap) = adjust_contexts st.st_context class_var kind var_heap #! st = {st & st_context = st_context} # th = clearSymbolType st th = (st, class_contexts, th, var_heap) where replace_gvs_with_class_var :: !SymbolType ![ATypeVar] !TypeVar !TypeKind !*TypeHeaps -> (!SymbolType, !*TypeHeaps) replace_gvs_with_class_var st agvs class_var kind th #! gvs = [atv_variable \\ {atv_variable} <- agvs] #! th = clearSymbolType st th #! th = foldSt subst_av_for_self st.st_attr_vars th #! th = foldSt (build_subst class_var) gvs th with build_subst class_var {tv_info_ptr} th=:{th_vars} #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TV class_var)) = {th & th_vars = th_vars} #! (new_st, th) = substituteInSymbolType st th #! (st_vars, th) = remove_gvs new_st.st_vars th with remove_gvs [] th = ([], th) remove_gvs [tv:tvs] th=:{th_vars} #! (tv_info, th_vars) = readPtr tv.tv_info_ptr th_vars #! (tvs, th) = remove_gvs tvs {th & th_vars = th_vars} #! tvs = case tv_info of TVI_Empty -> [tv:tvs] (TVI_Type _) -> tvs _ -> (abort "wrong TVI_?") ---> ("remove_gvs ", tv) = (tvs, th) #! new_st = { new_st & st_vars = [class_var : st_vars] } #! th = clearSymbolType st th #! th = clearSymbolType new_st th = (new_st, th) adjust_gavs st [gav:gavs] KindConst th #! th = clearSymbolType st th #! th = foldSt subst_av_for_self st.st_attr_vars th #! th = foldSt (subst_for_av gav) gavs th with subst_for_av gav {av_info_ptr} th=:{th_attrs} = {th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var gav))} #! (new_st, th) = substituteInSymbolType st th #! th = clearSymbolType st th #! th = clearSymbolType new_st th #! th = foldSt mark_av gavs th with mark_av {av_info_ptr} th=:{th_attrs} = {th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Used)} #! (st_attr_vars, th) = remove_avs new_st.st_attr_vars th with remove_avs [] th = ([], th) remove_avs [av:avs] th=:{th_attrs} #! (av_info, th_attrs) = readPtr av.av_info_ptr th_attrs #! (avs, th) = remove_avs avs {th & th_attrs = th_attrs } #! avs = case av_info of AVI_Empty -> [av:avs] AVI_Used -> avs _ -> (abort "wrong AVI_") ---> ("remove_avs ", av) = (avs, th) #! th = clearSymbolType new_st th = (new_st, th) adjust_gavs st gavs kind th = (st, th) adjust_contexts contexts class_var kind var_heap #! (contexts, class_contexts, var_heap) = split_contexts contexts var_heap #! class_contexs = case kind of KindConst -> class_contexts _ -> [] // just drop them = (contexts, class_contexts, var_heap) where // split contexts into involving and not invloving class variables split_contexts [] var_heap = ([], [], var_heap) split_contexts [context:contexts] var_heap #! (contexts1, class_contexts1, var_heap) = split_context context var_heap #! (contexts2, class_contexts2, var_heap) = split_contexts contexts var_heap = (contexts1 ++ contexts2, class_contexts1 ++ class_contexts2, var_heap) split_context tc=:{tc_class, tc_types, tc_var} var_heap #! (types, class_types) = split_types tc_types #! (tc_var, var_heap) = case isNilPtr tc_var of True -> newPtr VI_Empty var_heap False -> (tc_var, var_heap) #! tc = {tc & tc_var = tc_var} | isEmpty types = ([], [tc], var_heap) | isEmpty class_types = ([tc], [], var_heap) | otherwise #! tc = {tc & tc_types = types} #! (tc_var, var_heap) = newPtr VI_Empty var_heap #! class_tc = {tc & tc_types = class_types, tc_var = tc_var} = ([tc], [class_tc], var_heap) split_types [] = ([], []) split_types [type:types] # (types1, class_types1) = split_type type # (types2, class_types2) = split_types types = (types1 ++ types2, class_types1 ++ class_types2) split_type type #! contains_class_var = performOnTypeVars (\attr tv ok -> ok || tv == class_var) type False | contains_class_var = ([], [type]) = ([type], []) subst_av_for_self av=:{av_info_ptr} th=:{th_attrs} = {th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av))} buildMemberType :: !GenericDef !TypeKind !TypeVar !*TypeHeaps -> (!SymbolType, !*TypeHeaps) buildMemberType generic_def=:{gen_name,gen_type} kind class_var th // = abort "generics; buildMemberType" #! (gen_type, th) = freshGenericType gen_type th // Collect attributes of generic variables. // The attributes are instantiated along with the variables. #! (gen_vars_with_attrs, generic_avs, th) = collect_generic_var_attrs gen_type th // build additional arguments that emerge due to lifting #! (new_args, atvss, new_avs, attr_inequalities, th) = build_args gen_type gen_vars_with_attrs kind th #! atvss = case atvss of [] -> repeatn gen_type.gt_arity [] atvss -> transpose atvss // substitute generic variables for types // all non-generic variables must be left intact #! th = clearSymbolType gen_type.gt_type th #! th = build_generic_var_substs gen_vars_with_attrs class_var atvss kind th // #! th = build_attr_var_substs gen_type.gt_type.st_attr_vars generic_avs kind th #! (avs1, th) = build_attr_var_substs gen_type.gt_type.st_attr_vars generic_avs kind th #! (st, th) = substituteInSymbolType gen_type.gt_type th // update generated fields #! instantiation_tvs = [atv_variable \\ {atv_variable} <- (flatten atvss)] #! st = { st & st_vars = [class_var : instantiation_tvs ++ st.st_vars] , st_arity = (length new_args) + st.st_arity , st_args = new_args ++ st.st_args // , st_attr_vars = st.st_attr_vars ++ new_avs , st_attr_vars = avs1 ++ new_avs , st_attr_env = st.st_attr_env ++ attr_inequalities } = (st, th) //---> ("member type", gen_name, kind, st) where collect_generic_var_attrs {gt_type, gt_vars} th #! th = clearSymbolType gt_type th #! th = setTypeVarAttrs gt_type th #! (attributed_vars, (avs, th)) = mapSt get_attr gt_vars ([], th) with get_attr tv=:{tv_info_ptr} (avs, th=:{th_vars}) #! (TVI_Attribute attr, th_vars) = readPtr tv_info_ptr th_vars #! avs = (collect_attr_var attr) ++ avs #! th = {th & th_vars = th_vars} = ( {atv_attribute=attr, atv_variable=tv}, (avs, th)) collect_attr_var (TA_Var av) = [av] collect_attr_var _ = [] = (attributed_vars, avs, th) /* build_attr_var_substs avs generic_avs kind th = foldSt build_subst (determine_attr_vars kind avs generic_avs) th where determine_attr_vars KindConst avs generic_avs = removeMembers avs generic_avs determine_attr_vars kind avs generic_avs = avs build_subst av=:{av_info_ptr} th=:{th_attrs} = { th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av))} */ build_attr_var_substs avs [] KindConst th = (avs, foldSt build_attr_var_subst avs th) build_attr_var_substs avs generic_avs KindConst th # nongeneric_avs = avs -- generic_avs # {th_attrs} = th # (gen_av, th_attrs) = freshAttrVar (makeIdent "gav") th_attrs # new_generic_avs = repeatn (length generic_avs) gen_av // substitute generic var attributes with single attr var # th = foldSt build_subst generic_avs {th & th_attrs = th_attrs} with build_subst {av_info_ptr} th=:{th_attrs} = { th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var gen_av))} # th = foldSt build_attr_var_subst nongeneric_avs th = (nongeneric_avs ++ new_generic_avs, th) build_attr_var_substs avs generic_avs kind th = (avs, foldSt build_attr_var_subst avs th) build_attr_var_subst av=:{av_info_ptr} th=:{th_attrs} = { th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av))} build_generic_var_substs [] class_var [] kind th = th build_generic_var_substs [gv:gvs] class_var [tvs:tvss] kind th # th = build_generic_var_subst gv class_var tvs kind th # th = build_generic_var_substs gvs class_var tvss kind th = th build_generic_var_subst {atv_variable={tv_info_ptr}} class_var [] KindConst th=:{th_vars} #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TV class_var)) = {th & th_vars = th_vars} build_generic_var_subst {atv_variable={tv_info_ptr}} class_var atvs (KindArrow ks) th=:{th_vars} #! arity = length ks | arity <> length atvs = abort "sanity check: invalid number of type variables" #! type_args = [ makeAType (TV atv_variable) atv_attribute \\ {atv_variable, atv_attribute} <- atvs] #! type = (CV class_var) :@: type_args #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type type) = {th & th_vars = th_vars} build_args gen_type agvs KindConst th = ([], [], [], [], th) build_args gen_type agvs (KindArrow ks) th #! arity = length ks #! postfixes = [/*"_" +++*/ toString i \\ i <- [1..arity]] #! (ats, atvss, new_avs, ais, th) = build_generic_args gen_type agvs postfixes th = (ats, atvss, new_avs, ais, th) build_generic_args :: !GenericType ![ATypeVar] ![String] !*TypeHeaps -> (![AType], ![[ATypeVar]], ![AttributeVar], ![AttrInequality], !*TypeHeaps) build_generic_args gen_type agvs [] th = ([], [], [], [], th) build_generic_args gen_type agvs [postfix:postfixes] th #! (at, atvs, new_avs, ais, th) = build_generic_arg gen_type agvs postfix th #! (ats, atvss, new_avs1, ais1, th) = build_generic_args gen_type agvs postfixes th = ([at:ats], [atvs:atvss], new_avs ++ new_avs1, ais ++ ais1, th) build_generic_arg :: !GenericType ![ATypeVar] !String !*TypeHeaps -> (!AType, ![ATypeVar], ![AttributeVar], ![AttrInequality], !*TypeHeaps) build_generic_arg {gt_type, gt_vars, gt_arity} agvs postfix th=:{th_vars, th_attrs} #! th = clearSymbolType gt_type th #! {th_vars, th_attrs} = th // replace all generic variables with fresh variables #! (tvs, th_vars) = mapSt build_subst gt_vars th_vars with build_subst gv=:{tv_name,tv_info_ptr} th_vars #! name = makeIdent (tv_name.id_name +++ postfix) #! (tv, th_vars) = freshTypeVar name th_vars #! th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TV tv)) = (tv, th_vars) // leave all non-generic attribute variables intact #! th_attrs = foldSt build_subst gt_type.st_attr_vars th_attrs with build_subst av=:{av_info_ptr} th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av)) // all attribute variables at generic arguments must be taken afresh #! (attrs, (instantiated_avs, th_attrs)) = mapSt build_subst agvs ([], th_attrs) with build_subst {atv_attribute=TA_Unique} st = (TA_Unique, st) build_subst {atv_attribute=TA_Multi} st = (TA_Multi, st) build_subst {atv_attribute=TA_Var {av_name, av_info_ptr}} (avs, th_attrs) #! (fresh_av, th_attrs) = freshAttrVar (makeIdent (av_name.id_name+++postfix)) th_attrs #! attr = TA_Var fresh_av #! th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr attr) = (attr, ([fresh_av:avs], th_attrs)) #! (st, th) = substituteInSymbolType gt_type {th & th_vars = th_vars, th_attrs = th_attrs} #! atvs = [{atv_attribute=attr, atv_variable=tv} \\ attr <- attrs & tv <- tvs] #! (at, curry_avs, ais, th) = currySymbolType1 st ("arg"+++postfix) th #! th = clearSymbolType gt_type th = (at, atvs, instantiated_avs ++ curry_avs, ais, th) buildGenericRepType :: !Index !Index !*GenericState -> (AType, !*GenericState) buildGenericRepType module_index td_index gs=:{gs_modules, gs_predefs, gs_error} # (type_def=:{td_name}, gs_modules) = getTypeDef module_index td_index gs_modules # (common_defs, gs_modules) = gs_modules ! [module_index] # (atype, gs_error) = build_type module_index type_def gs_predefs common_defs gs_error = (atype, {gs & gs_modules = gs_modules, gs_error = gs_error}) where build_type td_module {td_rhs=(AlgType alts)} predefs common_defs error = (build_sum alts predefs common_defs.com_cons_defs, error) where build_sum :: ![DefinedSymbol] !PredefinedSymbols !{#ConsDef} -> !AType build_sum [] predefs cons_defs = abort "no alternatives in typedef" build_sum [{ds_index}] predefs cons_defs # cons_args = cons_defs.[ds_index].cons_type.st_args # atype = buildProductType cons_args predefs = case supportCons of True -> buildATypeCONS atype predefs False -> atype build_sum alts predefs cons_defs # (l,r) = splitAt ((length alts) / 2) alts = buildATypeEITHER (build_sum l predefs cons_defs) (build_sum r predefs cons_defs) predefs build_type td_module {td_rhs=(RecordType {rt_constructor={ds_index}})} predefs common_defs error #! {cons_type={st_args}} = common_defs . com_cons_defs . [ds_index] #! atype = buildProductType st_args predefs #! atype = case supportCons of True -> buildATypeCONS atype predefs False -> atype = (atype, error) build_type td_module {td_rhs=(SynType type)} predefs common_defs error = (type, error) // is that correct ??? build_type td_module td=:{td_rhs=(AbstractType _), td_name, td_arity, td_args, td_pos} predefs common_defs error #! error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build generic type repesentation for an abstract type" error = (makeAType TE TA_None, error) buildIsoRecord :: !DefinedSymbol !Int !DefinedSymbol !DefinedSymbol !*GenericState -> (!FunDef, !*GenericState) buildIsoRecord def_sym group_index from_fun to_fun gs=:{gs_heaps, gs_main_dcl_module_n, gs_predefs} # (from_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n from_fun [] gs_heaps # (to_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n to_fun [] gs_heaps # (iso_expr, gs_heaps) = buildISO to_expr from_expr gs_predefs gs_heaps # fun_def = makeFunction def_sym group_index [] iso_expr No [] gs_main_dcl_module_n NoPos = (fun_def, {gs & gs_heaps = gs_heaps}) // convert a type to ot's generic representation buildIsoTo :: !DefinedSymbol !Int !Int !CheckedTypeDef ![DefinedSymbol] !*GenericState -> (!FunDef, !*GenericState) buildIsoTo def_sym group_index type_def_mod type_def=:{td_rhs, td_name, td_index, td_pos} cons_infos gs=:{gs_heaps,gs_main_dcl_module_n} # (arg_expr, arg_var, gs_heaps) = buildVarExpr "x" gs_heaps # (body_expr, free_vars, gs=:{gs_error}) = build_body type_def_mod td_index td_rhs cons_infos arg_expr {gs&gs_heaps = gs_heaps} | not gs_error.ea_ok #! fun_def = makeFunction {def_sym&ds_arity=0} NoIndex [] EE No [] gs_main_dcl_module_n NoPos = (fun_def, {gs & gs_error = gs_error}) # fun_def = makeFunction def_sym group_index [arg_var] body_expr No free_vars gs_main_dcl_module_n NoPos = (fun_def, {gs & gs_error = gs_error}) //---> fun_def where get_cons_infos module_index td_index gs=:{gs_gtd_infos} # (GTDI_Generic {gtr_cons_infos}, gs_gtd_infos) = gs_gtd_infos ! [module_index, td_index] = (gtr_cons_infos, {gs & gs_gtd_infos = gs_gtd_infos}) build_body :: !Int !Int !TypeRhs ![DefinedSymbol] !Expression !*GenericState -> (!Expression, ![FreeVar], !*GenericState) build_body type_def_mod type_def_index (AlgType def_symbols) cons_infos arg_expr gs = build_body1 type_def_mod type_def_index def_symbols cons_infos arg_expr gs build_body type_def_mod type_def_index (RecordType {rt_constructor}) cons_infos arg_expr gs = build_body1 type_def_mod type_def_index [rt_constructor] cons_infos arg_expr gs build_body type_def_mod type_def_index (AbstractType _) cons_infos arg_expr gs=:{gs_error} #! gs_error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build isomorphisms for an abstract type" gs_error = (EE, [], {gs & gs_error = gs_error}) build_body type_def_mod type_def_index (SynType _) cons_infos arg_expr gs=:{gs_error} #! gs_error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build isomorphisms for a synonym type" gs_error = (EE, [], {gs & gs_error = gs_error}) build_body1 type_def_mod type_def_index cons_def_syms cons_infos arg_expr gs # (case_alts, free_vars, gs=:{gs_heaps}) = build_alts 0 (length cons_def_syms) type_def_mod cons_def_syms cons_infos gs # case_patterns = AlgebraicPatterns {glob_module = type_def_mod, glob_object = type_def_index} case_alts # (case_expr, gs_heaps) = buildCaseExpr arg_expr case_patterns gs_heaps = (case_expr, free_vars, {gs & gs_heaps = gs_heaps}) //---> (free_vars, case_expr) build_alts :: !Int !Int !Int ![DefinedSymbol] ![DefinedSymbol] !*GenericState -> ([AlgebraicPattern], [FreeVar], !*GenericState) build_alts i n type_def_mod [] [] gs = ([], [], gs) build_alts i n type_def_mod [cons_def_sym:cons_def_syms] cons_infos gs #! (cons_info, cons_infos) = case supportCons of True -> (hd cons_infos, tl cons_infos) False -> (EmptyDefinedSymbol, []) #! (alt, fvs, gs) = build_alt i n type_def_mod cons_def_sym cons_info gs #! (alts, free_vars, gs) = build_alts (i+1) n type_def_mod cons_def_syms cons_infos gs = ([alt:alts], fvs ++ free_vars, gs) build_alt :: !Int !Int !Int !DefinedSymbol !DefinedSymbol !*GenericState -> (AlgebraicPattern, [FreeVar], !*GenericState) build_alt i n type_def_mod def_symbol=:{ds_ident, ds_arity} cons_info gs=:{gs_heaps, gs_predefs, gs_main_dcl_module_n} #! names = ["x" +++ toString (i+1) +++ toString k \\ k <- [1..ds_arity]] #! (var_exprs, vars, gs_heaps) = buildVarExprs names gs_heaps #! (expr, gs_heaps) = build_prod var_exprs gs_predefs gs_heaps #! (expr, gs_heaps) = case supportCons of True //# (cons_info_expr, gs_heaps) = buildUndefFunApp [] gs_predefs gs_heaps # (cons_info_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n cons_info [] gs_heaps -> buildCONS cons_info_expr expr gs_predefs gs_heaps False -> (expr, gs_heaps) #! (expr, gs_heaps) = build_sum i n expr gs_predefs gs_heaps #! alg_pattern = { ap_symbol = {glob_module = type_def_mod, glob_object = def_symbol}, ap_vars = vars, ap_expr = expr, ap_position = NoPos } = (alg_pattern, vars, {gs & gs_heaps = gs_heaps}) build_sum :: !Int !Int !Expression !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) build_sum i n expr predefs heaps | n == 0 = abort "build sum of zero elements\n" | i >= n = abort "error building sum" | n == 1 = (expr, heaps) | i < (n/2) # (expr, heaps) = build_sum i (n/2) expr predefs heaps = buildLEFT expr predefs heaps | otherwise # (expr, heaps) = build_sum (i - (n/2)) (n - (n/2)) expr predefs heaps = buildRIGHT expr predefs heaps build_prod :: ![Expression] !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) build_prod [] predefs heaps = buildUNIT predefs heaps build_prod [expr] predefs heaps = (expr, heaps) build_prod exprs predefs heaps # (lexprs, rexprs) = splitAt ((length exprs)/2) exprs # (lexpr, heaps) = build_prod lexprs predefs heaps # (rexpr, heaps) = build_prod rexprs predefs heaps = buildPAIR lexpr rexpr predefs heaps // convert from generic representation to type buildIsoFrom :: !DefinedSymbol !Int !Int !CheckedTypeDef !*GenericState -> (!FunDef, !*GenericState) buildIsoFrom def_sym group_index type_def_mod type_def=:{td_rhs, td_name, td_index, td_pos} gs=:{gs_predefs, gs_heaps, gs_error,gs_main_dcl_module_n} #! (body_expr, free_vars, gs_heaps, gs_error) = build_body type_def_mod td_rhs gs_predefs gs_heaps gs_error | not gs_error.ea_ok #! fun_def = makeFunction {def_sym&ds_arity=0} NoIndex [] EE No [] gs_main_dcl_module_n td_pos = (fun_def, {gs & gs_heaps = gs_heaps, gs_error = gs_error} ) #! fun_def = makeFunction def_sym group_index [hd free_vars] body_expr No (tl free_vars) gs_main_dcl_module_n td_pos = (fun_def, {gs & gs_heaps = gs_heaps, gs_error = gs_error} ) //---> fun_def where build_body :: !Int !TypeRhs !PredefinedSymbols !*Heaps !*ErrorAdmin -> (!Expression, ![FreeVar], !*Heaps, !*ErrorAdmin) build_body type_def_mod (AlgType def_symbols) predefs heaps error = build_sum type_def_mod def_symbols predefs heaps error build_body type_def_mod (RecordType {rt_constructor}) predefs heaps error = build_sum type_def_mod [rt_constructor] predefs heaps error build_body type_def_mod (AbstractType _) predefs heaps error #! error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build isomorphisms for an abstract type" error = (EE, [], heaps, error) build_body type_def_mod (SynType _) predefs heaps error #! error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build isomorphisms for a synonym type" error = (EE, [], heaps, error) build_sum :: !Index [DefinedSymbol] !PredefinedSymbols !*Heaps !*ErrorAdmin -> (!Expression, ![FreeVar], !*Heaps, !*ErrorAdmin) build_sum type_def_mod [] predefs heaps error = abort "algebraic type with no constructors!\n" build_sum type_def_mod [def_symbol] predefs heaps error #! (cons_app_expr, cons_args, heaps) = build_cons_app type_def_mod def_symbol heaps #! (alt_expr, free_vars, heaps) = build_prod cons_app_expr cons_args predefs heaps = case supportCons of True #! (var_expr, var, heaps) = buildVarExpr "c" heaps #! (info_var, heaps) = buildFreeVar0 "i" heaps #! (alt_expr, heaps) = buildCaseCONSExpr var_expr info_var (hd free_vars) alt_expr predefs heaps -> (alt_expr, [var, info_var : free_vars], heaps, error) False -> (alt_expr, free_vars, heaps, error) build_sum type_def_mod def_symbols predefs heaps error #! (var_expr, var, heaps) = buildVarExpr "e" heaps #! (left_def_syms, right_def_syms) = splitAt ((length def_symbols) /2) def_symbols #! (left_expr, left_vars, heaps, error) = build_sum type_def_mod left_def_syms predefs heaps error #! (right_expr, right_vars, heaps, error) = build_sum type_def_mod right_def_syms predefs heaps error #! (case_expr, heaps) = buildCaseEITHERExpr var_expr (hd left_vars, left_expr) (hd right_vars, right_expr) predefs heaps #! vars = [var : left_vars ++ right_vars] = (case_expr, vars, heaps, error) build_prod :: !Expression ![FreeVar] !PredefinedSymbols !*Heaps -> (!Expression, ![FreeVar], !*Heaps) build_prod expr [] predefs heaps #! (var_expr, var, heaps) = buildVarExpr "x" heaps #! (case_expr, heaps) = buildCaseUNITExpr var_expr expr predefs heaps = (case_expr, [var], heaps) build_prod expr [cons_arg_var] predefs heaps = (expr, [cons_arg_var], heaps) build_prod expr cons_arg_vars predefs heaps #! (var_expr, var, heaps) = buildVarExpr "p" heaps #! (left_vars, right_vars) = splitAt ((length cons_arg_vars) /2) cons_arg_vars #! (expr, left_vars, heaps) = build_prod expr left_vars predefs heaps #! (expr, right_vars, heaps) = build_prod expr right_vars predefs heaps #! (case_expr, heaps) = buildCasePAIRExpr var_expr (hd left_vars) (hd right_vars) expr predefs heaps #! vars = [var : left_vars ++ right_vars] = (case_expr, vars, heaps) build_cons_app :: !Index !DefinedSymbol !*Heaps -> (!Expression, [FreeVar], !*Heaps) build_cons_app cons_mod def_symbol=:{ds_arity} heaps #! names = ["x" +++ toString k \\ k <- [1..ds_arity]] #! (var_exprs, vars, heaps) = buildVarExprs names heaps #! (expr, heaps) = buildConsApp cons_mod def_symbol var_exprs heaps = (expr, vars, heaps) buildIsomapFromTo :: !IsoDirection !DefinedSymbol !Int !Int !Int !*GenericState -> (!FunDef, !Index, !*GenericState) buildIsomapFromTo iso_dir def_sym group_index type_def_mod type_def_index gs=:{gs_heaps, gs_modules,gs_main_dcl_module_n} #! (type_def=:{td_name, td_index, td_arity, td_pos}, gs_modules) = getTypeDef type_def_mod type_def_index gs_modules #! arg_names = [ "i" +++ toString n \\ n <- [1 .. td_arity]] #! (isomap_arg_vars, gs_heaps) = buildFreeVars arg_names gs_heaps #! (arg_expr, arg_var, gs_heaps) = buildVarExpr "x" gs_heaps #! gs = {gs & gs_heaps = gs_heaps, gs_modules = gs_modules} #! (body_expr, free_vars, gs) = build_body iso_dir type_def_mod td_index type_def arg_expr isomap_arg_vars gs #! (fun_type, gs) = build_type1 iso_dir type_def_mod type_def_index gs #! fun_def = makeFunction def_sym group_index (isomap_arg_vars ++ [arg_var]) body_expr (Yes fun_type) free_vars gs_main_dcl_module_n td_pos = (fun_def, def_sym.ds_index, gs) //---> ("isomap from/to", td_name, fun_def) where build_body :: !IsoDirection !Int !Int !CheckedTypeDef !Expression ![FreeVar] !*GenericState -> (Expression, [FreeVar], !*GenericState) build_body iso_dir type_def_mod type_def_index type_def=:{td_rhs=(AlgType def_symbols)} arg_expr isomap_arg_vars gs = build_body1 iso_dir type_def_mod type_def_index type_def def_symbols arg_expr isomap_arg_vars gs build_body iso_dir type_def_mod type_def_index type_def=:{td_rhs=(RecordType {rt_constructor})} arg_expr isomap_arg_vars gs = build_body1 iso_dir type_def_mod type_def_index type_def [rt_constructor] arg_expr isomap_arg_vars gs build_body iso_dir type_def_mod type_def_index type_def=:{td_rhs=(AbstractType _),td_name, td_pos} arg_expr isomap_arg_vars gs=:{gs_error} #! gs_error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build map function for an abstract type" gs_error = (EE, [], {gs & gs_error = gs_error}) build_body iso_dir type_def_mod type_def_index type_def=:{td_rhs=(SynType _), td_name, td_pos} arg_expr isomap_arg_vars gs=:{gs_error} #! gs_error = checkErrorWithIdentPos (newPosition td_name td_pos) "cannot build map function for a synonym type" gs_error = (EE, [], {gs & gs_error = gs_error}) build_body1 iso_dir type_def_mod type_def_index type_def def_symbols arg_expr isomap_arg_vars gs #! (case_alts, free_vars, gs=:{gs_heaps}) = build_alts iso_dir 0 (length def_symbols) type_def_mod def_symbols isomap_arg_vars type_def gs #! case_patterns = AlgebraicPatterns {glob_module = type_def_mod, glob_object = type_def_index} case_alts #! (case_expr, gs_heaps) = buildCaseExpr arg_expr case_patterns gs_heaps = (case_expr, free_vars, {gs & gs_heaps = gs_heaps}) build_alts :: !IsoDirection !Int !Int !Int ![DefinedSymbol] ![FreeVar] !CheckedTypeDef !*GenericState -> ([AlgebraicPattern], [FreeVar], !*GenericState) build_alts iso_dir i n type_def_mod [] arg_vars type_def gs = ([], [], gs) build_alts iso_dir i n type_def_mod [def_symbol:def_symbols] arg_vars type_def gs #! (alt, fvs, gs) = build_alt iso_dir i n type_def_mod def_symbol arg_vars type_def gs #! (alts, free_vars, gs) = build_alts iso_dir (i+1) n type_def_mod def_symbols arg_vars type_def gs = ([alt:alts], fvs ++ free_vars, gs) build_alt :: !IsoDirection !Int !Int !Int !DefinedSymbol ![FreeVar] !CheckedTypeDef !*GenericState -> (AlgebraicPattern, [FreeVar], !*GenericState) build_alt iso_dir i n type_def_mod def_symbol=:{ds_ident, ds_arity, ds_index} fun_arg_vars type_def gs=:{gs_heaps, gs_modules} #! names = ["x" +++ toString (i+1) +++ toString k \\ k <- [1..ds_arity]] #! (cons_arg_vars, gs_heaps) = buildFreeVars names gs_heaps #! (cons_def=:{cons_type}, gs_modules) = getConsDef type_def_mod ds_index gs_modules #! gs = {gs & gs_heaps = gs_heaps, gs_modules = gs_modules} #! (cons_arg_exprs, gs=:{gs_heaps}) = build_cons_args iso_dir cons_type.st_args cons_arg_vars fun_arg_vars type_def gs #! (expr, gs_heaps) = buildConsApp type_def_mod def_symbol cons_arg_exprs gs_heaps #! alg_pattern = { ap_symbol = {glob_module = type_def_mod, glob_object = def_symbol}, ap_vars = cons_arg_vars, ap_expr = expr, ap_position = NoPos } = (alg_pattern, cons_arg_vars, {gs & gs_heaps = gs_heaps}) build_cons_args :: !IsoDirection ![AType] ![FreeVar] ![FreeVar] !CheckedTypeDef !*GenericState -> ([Expression], !*GenericState) build_cons_args iso_dir [] [] fun_arg_vars type_def gs = ([], gs) build_cons_args iso_dir [arg_type:arg_types] [cons_arg_var:cons_arg_vars] fun_arg_vars type_def gs #! (arg_expr, gs) = build_cons_arg iso_dir arg_type cons_arg_var fun_arg_vars type_def gs #! (arg_exprs, gs) = build_cons_args iso_dir arg_types cons_arg_vars fun_arg_vars type_def gs = ([arg_expr : arg_exprs], gs) build_cons_arg :: !IsoDirection !AType !FreeVar ![FreeVar] !CheckedTypeDef !*GenericState -> (!Expression, !*GenericState) build_cons_arg iso_dir type cons_arg_var fun_vars type_def=:{td_args, td_name, td_pos} gs #! type_def_args = [atv_variable \\ {atv_variable} <- td_args] #! (iso_expr, gs) = buildIsomapExpr type type_def_args fun_vars td_name td_pos gs #! {gs_heaps, gs_predefs} = gs #! sel_expr = case iso_dir of IsoTo -> buildIsoToSelectionExpr iso_expr gs_predefs IsoFrom -> buildIsoFromSelectionExpr iso_expr gs_predefs #! (cons_var_expr, _, gs_heaps) = buildBoundVarExpr cons_arg_var gs_heaps = (sel_expr @ [cons_var_expr], {gs & gs_heaps = gs_heaps}) build_type1 :: !IsoDirection !Int !Int !*GenericState -> (!SymbolType, !*GenericState) build_type1 iso_dir module_index type_def_index gs=:{gs_heaps, gs_modules, gs_predefs} #! (st=:{st_result, st_args, st_arity}, gs) = buildIsomapType module_index type_def_index gs # (type1, type2) = case st_result.at_type of (TA _ [type1, type2]) -> (type1, type2) _ -> abort "Must be ISO application" #! (argtype, restype) = case iso_dir of IsoTo -> (type1, type2) IsoFrom -> (type2, type1) #! st = { st & st_args = st_args ++ [argtype] , st_arity = inc st_arity , st_result = restype } = (st, gs) build_type :: !IsoDirection !Int !Int !*GenericState -> (!SymbolType, !*GenericState) build_type iso_dir module_index type_def_index gs=:{gs_heaps, gs_modules, gs_predefs} #! ({td_arity, td_name}, gs_modules) = getTypeDef module_index type_def_index gs_modules #! (tvs1, gs_heaps) = mapSt (\n->build_type_var ("a"+++toString n)) [1..td_arity] gs_heaps #! (tvs2, gs_heaps) = mapSt (\n->build_type_var ("b"+++toString n)) [1..td_arity] gs_heaps #! (iso_args) = [buildATypeISO t1 t2 gs_predefs \\ t1 <- tvs1 & t2 <- tvs2] #! type_symb_ident = { type_name = td_name, type_index = { glob_module = module_index, glob_object = type_def_index }, type_arity = td_arity, type_prop = { tsp_sign = {sc_pos_vect=cAllBitsClear, sc_neg_vect=cAllBitsClear}, tsp_propagation = cAllBitsClear, tsp_coercible = False } } #! (av1, gs_heaps) = buildAttrVar "u1" gs_heaps #! (av2, gs_heaps) = buildAttrVar "u2" gs_heaps #! type1 = makeAType (TA type_symb_ident tvs1) (TA_Var av1) #! type2 = makeAType (TA type_symb_ident tvs2) (TA_Var av2) #! (arg_type, res_type) = case iso_dir of IsoTo -> (type1, type2) IsoFrom -> (type2, type1) #! symbol_type = { st_vars = [tv \\ {at_type=(TV tv)} <- tvs1] ++ [tv \\ {at_type=(TV tv)} <- tvs2], st_args = iso_args ++ [arg_type], st_args_strictness = NotStrict, st_arity = td_arity + 1, st_result = res_type, st_context = [], st_attr_vars = [av \\ {at_attribute=(TA_Var av)} <- tvs1] ++ [av \\ {at_attribute=(TA_Var av)} <- tvs2] ++ [av1, av2], st_attr_env = [] } #! gs = {gs & gs_heaps = gs_heaps, gs_modules = gs_modules} = (symbol_type, gs) //---> ("isomap to/from type", td_name, symbol_type) build_type_var name heaps #! (av, heaps) = buildAttrVar name heaps #! (tv, heaps) = buildTypeVar name heaps = (makeAType (TV tv) (TA_Var av), heaps) buildIsomapForTypeDef :: !DefinedSymbol !Int !Int !CheckedTypeDef !DefinedSymbol !DefinedSymbol !*GenericState -> (!FunDef, !Index, !*GenericState) buildIsomapForTypeDef fun_def_sym group_index type_def_mod type_def=:{td_name, td_index, td_arity, td_pos} from_fun to_fun gs=:{gs_main_dcl_module_n, gs_heaps, gs_predefs} #! arg_names = [ "iso" +++ toString n \\ n <- [1 .. td_arity]] #! (arg_exprs, arg_vars, gs_heaps) = buildVarExprs arg_names gs_heaps #! (from_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n from_fun arg_exprs gs_heaps #! (to_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n to_fun arg_exprs gs_heaps #! (iso_expr, gs_heaps) = buildISO to_expr from_expr gs_predefs gs_heaps #! gs = {gs & gs_heaps = gs_heaps} #! (fun_type, gs) = buildIsomapType type_def_mod td_index gs #! fun_def = makeFunction fun_def_sym group_index arg_vars iso_expr (Yes fun_type) [] gs_main_dcl_module_n td_pos = (fun_def, fun_def_sym.ds_index, gs) buildIsomapType :: !Int !Int !*GenericState -> (!SymbolType, !*GenericState) buildIsomapType module_index type_def_index gs=:{gs_heaps, gs_modules, gs_predefs, gs_td_infos} #! ({td_arity, td_name, td_pos}, gs_modules) = getTypeDef module_index type_def_index gs_modules # ({tdi_kinds}, gs_td_infos) = gs_td_infos ! [module_index, type_def_index] # kind = case tdi_kinds of [] -> KindConst ks -> KindArrow (ks /*++ [KindConst]*/) // build generic type for isomap # (t1, tv1, av1, gs_heaps) = build_type_var1 "a" gs_heaps # (t2, tv2, av2, gs_heaps) = build_type_var1 "b" gs_heaps # generic_type = { gt_type = { st_vars = [] , st_args_strictness=NotStrict , st_args = [] , st_arity = 0 , st_result = buildATypeISO t1 t2 gs_predefs , st_context = [] , st_attr_vars = [av1, av2] , st_attr_env = [] } , gt_vars = [tv1, tv2] , gt_arity = 2 } # dummy_generic_def = { gen_name = td_name , gen_member_name = td_name , gen_type = generic_type , gen_pos = td_pos , gen_kinds_ptr = nilPtr , gen_cons_ptr = nilPtr , gen_classes = [] , gen_isomap = EmptyDefinedSymbol } # (st, agvs, gavs, hp_type_heaps) = specializeGenericType dummy_generic_def kind gs_heaps.hp_type_heaps // substitute generic variables with the type #! type_symb = { type_name = td_name, type_index = { glob_module = module_index, glob_object = type_def_index }, type_arity = td_arity, type_prop = { tsp_sign = {sc_pos_vect=cAllBitsClear, sc_neg_vect=cAllBitsClear}, tsp_propagation = cAllBitsClear, tsp_coercible = False } } # hp_type_heaps = foldSt subst_av_for_self st.st_attr_vars hp_type_heaps with subst_av_for_self av=:{av_info_ptr} th=:{th_attrs} = {th & th_attrs = th_attrs <:= (av_info_ptr, AVI_Attr (TA_Var av))} # hp_type_heaps = foldSt subst_with_the_type agvs hp_type_heaps with subst_with_the_type {atv_variable={tv_info_ptr}} th=:{th_vars} = {th & th_vars = th_vars <:= (tv_info_ptr, TVI_Type (TA type_symb []))} # (ok, (st_args, st_result), hp_type_heaps) = substitute (st.st_args, st.st_result) hp_type_heaps # symbol_type = { st & st_args = st_args , st_result = st_result , st_vars = st.st_vars -- [atv_variable \\ {atv_variable} <- agvs] } #! gs_heaps = { gs_heaps & hp_type_heaps = hp_type_heaps } #! gs = {gs & gs_heaps = gs_heaps, gs_modules = gs_modules, gs_td_infos = gs_td_infos} = (symbol_type, gs) //---> ("isomap to/from type", td_name, symbol_type) where build_type_var1 name heaps #! (av, heaps) = buildAttrVar name heaps #! (tv, heaps) = buildTypeVar name heaps = (makeAType (TV tv) (TA_Var av), tv, av, heaps) buildIsomapForGeneric :: !DefinedSymbol !Int !GenericDef !*GenericState -> (!FunDef, !Index, !*GenericState) buildIsomapForGeneric def_sym group_index {gen_type, gen_name, gen_pos} gs=:{gs_heaps,gs_main_dcl_module_n} #! arg_names = [ "iso" +++ toString n \\ n <- [1 .. gen_type.gt_arity]] #! (arg_vars, gs_heaps) = buildFreeVars arg_names gs_heaps #! curried_gt_type = curry_symbol_type gen_type.gt_type #! gs = {gs & gs_heaps = gs_heaps } #! (body_expr, gs) = buildIsomapExpr curried_gt_type gen_type.gt_vars arg_vars gen_name gen_pos gs #! fun_def = makeFunction def_sym group_index arg_vars body_expr No [] gs_main_dcl_module_n gen_pos = (fun_def, def_sym.ds_index, gs) where // no uniqueness stuff is needed to build the // expression using the type curry_symbol_type {st_args, st_result} = foldr (\x y -> makeAType (x --> y) TA_Multi) st_result st_args // expression that does mapping of a type buildIsomapExpr :: !AType // type to build mapping expression for ![TypeVar] // type variables of the type ![FreeVar] // function arguments corresponding to the type variables !Ident !Position !*GenericState -> (!Expression, !*GenericState) buildIsomapExpr {at_type} arg_type_vars arg_vars name pos gs = build_expr at_type arg_type_vars arg_vars name pos gs where build_expr :: !Type ![TypeVar] ![FreeVar] !Ident !Position !*GenericState -> (!Expression, !*GenericState) build_expr (TA {type_arity=0} _) arg_type_vars arg_vars name pos gs=:{gs_predefs, gs_heaps} // isomap for types with no arguments is identity # (expr, gs_heaps) = buildIsomapIdApp gs_predefs gs_heaps = (expr, {gs & gs_heaps = gs_heaps}) build_expr (TA {type_index, type_name} args) arg_type_vars arg_vars name pos gs # (arg_exprs, gs) = build_exprs args arg_type_vars arg_vars name pos gs # {gs_heaps, gs_main_dcl_module_n, gs_gtd_infos} = gs # (gtd_info, gs_gtd_infos) = gs_gtd_infos ! [type_index.glob_module, type_index.glob_object] # gt = case gtd_info of (GTDI_Generic gt) -> gt _ -> abort ("(generic.icl) type " +++ type_name.id_name +++ " does not have generic representation\n") # (expr, gs_heaps) = buildFunApp gs_main_dcl_module_n gt.gtr_isomap arg_exprs gs_heaps = (expr, {gs & gs_heaps = gs_heaps, gs_gtd_infos = gs_gtd_infos}) build_expr (arg_type --> res_type) arg_type_vars arg_vars name pos gs # (arg_expr, gs) = buildIsomapExpr arg_type arg_type_vars arg_vars name pos gs # (res_expr, gs) = buildIsomapExpr res_type arg_type_vars arg_vars name pos gs # {gs_heaps, gs_main_dcl_module_n, gs_predefs} = gs # (expr, gs_heaps) = buildIsomapArrowApp arg_expr res_expr gs_predefs gs_heaps = (expr, {gs & gs_heaps = gs_heaps}) build_expr ((CV type_var) :@: args) arg_type_vars arg_vars name pos gs=:{gs_error} #! (arg_exprs, gs) = build_exprs args arg_type_vars arg_vars name pos gs #! (cons_var_expr, gs) = build_expr_for_type_var type_var arg_type_vars arg_vars gs = (cons_var_expr @ arg_exprs, gs) /* #! gs_error = reportError name pos "type constructor variables are not yet supported in generic types" gs_error = (EE, {gs & gs_error = gs_error}) */ build_expr (TB baric_type) arg_type_vars arg_vars name pos gs=:{gs_predefs, gs_heaps} # (expr, gs_heaps) = buildIsomapIdApp gs_predefs gs_heaps = (expr, {gs & gs_heaps = gs_heaps}) build_expr (TV type_var) arg_type_vars arg_vars name pos gs = build_expr_for_type_var type_var arg_type_vars arg_vars gs build_expr (GTV type_var) arg_type_vars arg_vars name pos gs = build_expr_for_type_var type_var arg_type_vars arg_vars gs build_expr (TQV type_var) arg_type_vars arg_vars name pos gs = build_expr_for_type_var type_var arg_type_vars arg_vars gs build_expr (TLifted type_var) arg_type_vars arg_vars name pos gs = build_expr_for_type_var type_var arg_type_vars arg_vars gs build_expr _ arg_type_vars arg_vars name pos gs=:{gs_error} #! gs_error = reportError name pos "cannot build mapping for the type" gs_error = (EE, {gs & gs_error = gs_error}) build_exprs [] arg_type_vars arg_vars name pos gs = ([], gs) build_exprs [type:types] arg_type_vars arg_vars name pos gs # (expr, gs) = buildIsomapExpr type arg_type_vars arg_vars name pos gs # (exprs, gs) = build_exprs types arg_type_vars arg_vars name pos gs = ([expr:exprs], gs) build_expr_for_type_var type_var arg_type_vars arg_vars gs=:{gs_predefs, gs_heaps} # (var_expr, gs_heaps) = buildExprForTypeVar type_var arg_type_vars arg_vars gs_predefs gs_heaps = (var_expr, {gs & gs_heaps = gs_heaps}) buildInstance :: !DefinedSymbol !Int !ClassInstance !GenericDef !*GenericState -> (!FunDef, !*GenericState) buildInstance def_sym group_index instance_def=:{ins_type, ins_generic, ins_pos, ins_ident} generic_def=:{gen_name, gen_type, gen_isomap} gs=:{gs_heaps,gs_main_dcl_module_n} #! original_arity = gen_type.gt_type.st_arity #! generated_arity = def_sym.ds_arity - original_arity // arity of kind #! generated_arg_names = [ "f" +++ toString n \\ n <- [1 .. generated_arity]] #! (generated_arg_vars, gs_heaps) = buildFreeVars generated_arg_names gs_heaps #! original_arg_names = [ "x" +++ toString n \\ n <- [1 .. original_arity]] #! (original_arg_exprs, original_arg_vars, gs_heaps) = buildVarExprs original_arg_names gs_heaps #! arg_vars = generated_arg_vars ++ original_arg_vars #! (gt=:{gtr_type, gtr_type_args, gtr_cons_infos}, gs) = get_generic_type ins_type {gs & gs_heaps = gs_heaps } #! gen_glob_def_sym = { glob_module = ins_generic.glob_module, glob_object = { ds_ident = gen_name, ds_index = ins_generic.glob_object, ds_arity = 0 } } #! (adaptor_expr, gs) = build_adaptor_expr gt gen_isomap gs //---> ("generic type", gtr_type) #! (instance_expr, cons_infos, gs) = build_instance_expr gtr_type gtr_cons_infos gtr_type_args generated_arg_vars gen_glob_def_sym gs //---> ("build_instance_expr", gtr_type_args, generated_arg_vars) | supportConsInfo && (not (isEmpty cons_infos)) = abort "not all cons infos consumed" #! body_expr = if (isEmpty original_arg_exprs) (adaptor_expr @ [instance_expr]) ((adaptor_expr @ [instance_expr]) @ original_arg_exprs) #! fun_def = makeFunction def_sym group_index arg_vars body_expr No [] gs_main_dcl_module_n ins_pos = (fun_def, gs) //---> ("buildInstance", fun_def) where get_generic_type :: !InstanceType !*GenericState -> (GenericTypeRep, !*GenericState) get_generic_type ins_type gs=:{gs_modules, gs_gtd_infos, gs_error} # instance_type = hd ins_type.it_types # {type_index} = case instance_type of TA type_symb_ident _ -> type_symb_ident _ -> abort ("instance type is not a type application") //---> ("get_generic_type", instance_type) # (gtd_info, gs_gtd_infos) = gs_gtd_infos ! [type_index.glob_module, type_index.glob_object] # (GTDI_Generic gt) = gtd_info = (gt, {gs & gs_gtd_infos = gs_gtd_infos, gs_modules = gs_modules, gs_error=gs_error}) build_adaptor_expr {gtr_iso, gtr_type} gen_isomap gs=:{gs_heaps, gs_main_dcl_module_n, gs_predefs} // create n iso applications # (iso_exprs, gs_heaps) = build_iso_exprs gen_isomap.ds_arity gtr_iso gs_main_dcl_module_n gs_heaps # (isomap_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n gen_isomap iso_exprs gs_heaps # sel_expr = buildIsoFromSelectionExpr isomap_expr gs_predefs = (sel_expr, {gs & gs_heaps = gs_heaps}) build_iso_exprs n iso gs_main_dcl_module_n gs_heaps | n == 0 = ([], gs_heaps) # (expr, gs_heaps) = buildFunApp gs_main_dcl_module_n iso [] gs_heaps # (exprs, gs_heaps) = build_iso_exprs (n - 1) iso gs_main_dcl_module_n gs_heaps = ([expr:exprs], gs_heaps) // e.g. for eq on lists: // eqEITHER eqUNIT (eqPAIR eqElt (eqList eqElt)) // with cons info: // eqEITHER // (eqCONS info_Nil eqUNIT) // (eqCONS info_Cons (eqPAIR eqElt (eqList eqElt))) build_instance_expr :: !AType ![DefinedSymbol] ![TypeVar] ![FreeVar] !(Global DefinedSymbol) !*GenericState -> (Expression, ![DefinedSymbol], !*GenericState) build_instance_expr {at_type} cons_infos type_vars vars gen_sym gs = build_instance_expr1 at_type cons_infos type_vars vars gen_sym gs build_instance_expr1 (TA {type_name, type_index, type_arity} type_args) cons_infos type_vars vars gen_sym gs # (arg_exprs, cons_infos, gs=:{gs_heaps}) = build_args type_args cons_infos gs with build_args [] cons_infos gs = ([], cons_infos, gs) build_args [t:ts] cons_infos gs # (e, cons_infos, gs) = build_instance_expr t cons_infos type_vars vars gen_sym gs # (es, cons_infos, gs) = build_args ts cons_infos gs = ([e:es], cons_infos, gs) # (is_cons, gs) = is_cons_instance type_index gs | supportConsInfo && is_cons = build_cons_fun_app gen_sym arg_exprs cons_infos gs | otherwise # (kind, gs) = get_kind_of_type_def type_index gs = build_generic_app gen_sym kind arg_exprs cons_infos gs build_instance_expr1 (arg_type --> res_type) cons_infos type_vars vars gen_sym gs #! (arg_expr, cons_infos, gs) = build_instance_expr arg_type cons_infos type_vars vars gen_sym gs #! (res_expr, cons_infos, gs) = build_instance_expr res_type cons_infos type_vars vars gen_sym gs = build_generic_app gen_sym (KindArrow [KindConst,KindConst/*,KindConst*/]) [arg_expr, res_expr] cons_infos gs build_instance_expr1 ((CV type_var) :@: type_args) cons_infos type_vars vars gen_sym gs=:{gs_error} /* # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "application of type constructor variable is not yet supported in generic types" gs_error = (EE, cons_infos, {gs & gs_error = gs_error}) */ # (arg_exprs, cons_infos, gs=:{gs_heaps}) = build_args type_args cons_infos gs with build_args [] cons_infos gs = ([], cons_infos, gs) build_args [t:ts] cons_infos gs # (e, cons_infos, gs) = build_instance_expr t cons_infos type_vars vars gen_sym gs # (es, cons_infos, gs) = build_args ts cons_infos gs = ([e:es], cons_infos, gs) # (var_expr, cons_infos, gs) = build_expr_for_type_var type_var type_vars vars cons_infos gs = (var_expr @ arg_exprs, cons_infos, gs) build_instance_expr1 (TB basic_type) cons_infos type_vars vars gen_sym gs = build_generic_app gen_sym KindConst [] cons_infos gs build_instance_expr1 (TV type_var) cons_infos type_vars vars gen_sym gs = build_expr_for_type_var type_var type_vars vars cons_infos gs build_instance_expr1 (GTV type_var) cons_infos type_vars vars gen_sym gs = build_expr_for_type_var type_var type_vars vars cons_infos gs build_instance_expr1 (TQV type_var) cons_infos type_vars vars gen_sym gs = build_expr_for_type_var type_var type_vars vars cons_infos gs build_instance_expr1 _ cons_infos _ _ _ gs=:{gs_error} # gs_error = checkErrorWithIdentPos (newPosition ins_ident ins_pos) "can not build instance for the type" gs_error = (EE, cons_infos, {gs & gs_error = gs_error}) build_expr_for_type_var type_var type_vars vars cons_infos gs=:{gs_predefs, gs_heaps} # (var_expr, gs_heaps) = buildExprForTypeVar type_var type_vars vars gs_predefs gs_heaps = (var_expr, cons_infos, {gs & gs_heaps = gs_heaps}) build_generic_app {glob_module, glob_object} kind arg_exprs cons_infos gs=:{gs_heaps} # (expr, gs_heaps) = buildGenericApp glob_module glob_object kind arg_exprs gs_heaps = (expr, cons_infos, {gs & gs_heaps = gs_heaps}) get_kind_of_type_def {glob_module, glob_object} gs=:{gs_td_infos} # (td_info, gs_td_infos) = gs_td_infos ! [glob_module, glob_object] = (make_kind td_info.tdi_kinds, {gs & gs_td_infos = gs_td_infos}) where make_kind [] = KindConst make_kind ks = KindArrow (ks /*++ [KindConst]*/) is_cons_instance {glob_module, glob_object} gs=:{gs_predefs} # {pds_def, pds_module} = gs_predefs.[PD_TypeCONS] = (pds_module == glob_module && pds_def == glob_object, gs) build_cons_fun_app gen=:{glob_module, glob_object} arg_exprs [cons_info:cons_infos] gs=:{ gs_heaps=gs_heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}}, gs_main_dcl_module_n, gs_modules, gs_error} #! (generic_def=:{gen_name, gen_pos, gen_cons_ptr}, gs_modules) = getGenericDef glob_module glob_object.ds_index gs_modules #! (info, th_vars) = readPtr gen_cons_ptr th_vars #! gs_heaps = { gs_heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars }} # (cons_info_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n cons_info [] gs_heaps #! (fun_def_sym, gs_error) = case info of TVI_ConsInstance fun_def_sym -> (fun_def_sym, gs_error) TVI_Empty -> (EmptyDefinedSymbol, reportError gen_name gen_pos "no CONS instance provided" gs_error) #! (app_expr, gs_heaps) = buildFunApp gs_main_dcl_module_n fun_def_sym [cons_info_expr:arg_exprs] gs_heaps = (app_expr, cons_infos, {gs & gs_heaps = gs_heaps, gs_modules = gs_modules, gs_error = gs_error}) //---> ("build_cons_app", cons_info.ds_ident, fun_def_sym.ds_ident) buildExprForTypeVar :: TypeVar // type variable to build exspression for [TypeVar] // generic type variables [FreeVar] // function arguments corresponding to the type variables !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildExprForTypeVar type_var type_vars vars predefs heaps | length type_vars <> length vars = abort "buildExprForTypeVar: inconsistent arguments\n" # tv_info_ptrs = {tv_info_ptr \\ {tv_info_ptr} <- type_vars} // find whether type_var is contained in the array of generic variables. # index = find_in_array 0 tv_info_ptrs type_var.tv_info_ptr | index == (-1) // If not, it is a non-generic variable. // For non-generic variables the isomorphism is identity = buildIsomapIdApp predefs heaps // This is a generic variable, // use corresponding function argument variable # (expr, var, heaps) = buildBoundVarExpr (vars !! index) heaps = (expr, heaps) where find_in_array :: !Int !{#TypeVarInfoPtr} !TypeVarInfoPtr -> !Int find_in_array index array el | index == size array = -1 | array.[index] == el = index = find_in_array (inc index) array el buildKindConstInstance :: !DefinedSymbol !Int !Index !DefinedSymbol !TypeKind !GenericState -> (!FunDef, !*GenericState) buildKindConstInstance def_sym group_index generic_module generic_def_sym kind=:(KindArrow kinds) gs=:{gs_heaps,gs_main_dcl_module_n} #! arg_names = ["x" +++ toString i \\ i <- [1 .. def_sym.ds_arity]] #! (arg_exprs, arg_vars, gs_heaps) = buildVarExprs arg_names gs_heaps # (gen_exprs, gs_heaps) = mapSt build_gen_expr [1 .. (length kinds)/* - 1*/] gs_heaps #! (body_expr, gs_heaps) = buildGenericApp generic_module generic_def_sym kind (gen_exprs ++ arg_exprs) gs_heaps #! fun_def = makeFunction def_sym group_index arg_vars body_expr No [] gs_main_dcl_module_n NoPos = (fun_def, {gs & gs_heaps = gs_heaps}) where build_gen_expr _ heaps = buildGenericApp generic_module generic_def_sym KindConst [] heaps buildKindConstInstance1 :: !DefinedSymbol !Int !Index !DefinedSymbol ![TypeKind] !GenericState -> (!FunDef, !*GenericState) buildKindConstInstance1 def_sym group_index generic_module generic_def_sym arg_kinds gs=:{gs_heaps,gs_main_dcl_module_n} #! arg_names = ["x" +++ toString i \\ i <- [1 .. def_sym.ds_arity]] #! (arg_exprs, arg_vars, gs_heaps) = buildVarExprs arg_names gs_heaps # (gen_exprs, gs_heaps) = mapSt build_gen_expr arg_kinds gs_heaps #! (body_expr, gs_heaps) = buildGenericApp generic_module generic_def_sym (KindArrow arg_kinds) (gen_exprs ++ arg_exprs) gs_heaps #! fun_def = makeFunction def_sym group_index arg_vars body_expr No [] gs_main_dcl_module_n NoPos = (fun_def, {gs & gs_heaps = gs_heaps}) where build_gen_expr kind heaps = buildGenericApp generic_module generic_def_sym kind [] heaps //=========================================== // access to common definitions //=========================================== getTypeDef :: !Index !Index !u:{#CommonDefs} -> (!CheckedTypeDef, !u:{#CommonDefs}) getTypeDef mod_index type_index modules # (common_defs=:{com_type_defs}, modules) = modules![mod_index] # type_def = com_type_defs.[type_index] = (type_def, modules) getConsDef :: !Index !Index !u:{#CommonDefs} -> (!ConsDef, !u:{#CommonDefs}) getConsDef mod_index type_index modules # (common_defs=:{com_cons_defs}, modules) = modules![mod_index] # cons_def = com_cons_defs.[type_index] = (cons_def, modules) getSelectorDef :: !Index !Index !u:{#CommonDefs} -> (!SelectorDef, !u:{#CommonDefs}) getSelectorDef mod_index type_index modules # (common_defs=:{com_selector_defs}, modules) = modules![mod_index] # sel_def = com_selector_defs.[type_index] = (sel_def, modules) getInstanceDef :: !Index !Index !u:{#CommonDefs} -> (!ClassInstance, !u:{#CommonDefs}) getInstanceDef mod_index ins_index modules # (common_defs=:{com_instance_defs}, modules) = modules![mod_index] # instance_def = com_instance_defs.[ins_index] = (instance_def, modules) getGenericDef :: !Index !Index !u:{#CommonDefs} -> (!GenericDef, !u:{#CommonDefs}) getGenericDef module_index generic_index modules # (common_defs=:{com_generic_defs}, modules) = modules![module_index] # generic_def = com_generic_defs.[generic_index] = (generic_def, modules) getClassDef :: !Index !Index !u:{#CommonDefs} -> (!ClassDef, !u:{#CommonDefs}) getClassDef module_index class_index modules #! (common_defs=:{com_class_defs}, modules) = modules![module_index] #! class_def = com_class_defs.[class_index] = (class_def, modules) getMemberDef :: !Index !Index !u:{#CommonDefs} -> (!MemberDef, !u:{#CommonDefs}) getMemberDef module_index member_index modules # (common_defs=:{com_member_defs}, modules) = modules![module_index] # member_def = com_member_defs.[member_index] = (member_def, modules) getGenericMember :: !(Global Index) !TypeKind !{#CommonDefs} -> (Bool, Global Index) getGenericMember {glob_module, glob_object} kind modules # (generic_def, modules) = getGenericDef glob_module glob_object modules # (ok, def_sym) = getGenericClassForKind generic_def kind | not ok = (False, undef) # (class_def, modules) = getClassDef glob_module def_sym.ds_index modules # {ds_index} = class_def.class_members.[0] = (True, {glob_module = glob_module, glob_object = ds_index}) //=================================== // Types //=================================== makeAType :: !Type !TypeAttribute -> !AType makeAType type attr = { at_attribute = attr , at_type = type } buildTypeVar name heaps=:{hp_type_heaps=hp_type_heaps=:{th_vars}} # (tv, th_vars) = freshTypeVar {id_name=name,id_info=nilPtr} th_vars = ( tv, {heaps & hp_type_heaps = {hp_type_heaps & th_vars = th_vars}}) buildAttrVar name heaps=:{hp_type_heaps=hp_type_heaps=:{th_attrs}} # (av, th_attrs) = freshAttrVar {id_name=name,id_info=nilPtr} th_attrs = ( av, {heaps & hp_type_heaps = {hp_type_heaps & th_attrs = th_attrs}}) freshTypeVar :: !Ident !*TypeVarHeap -> (!TypeVar, !*TypeVarHeap) freshTypeVar name th_vars # (info_ptr, th_vars) = newPtr TVI_Empty th_vars = ({tv_name = name, tv_info_ptr = info_ptr}, th_vars) freshAttrVar :: !Ident !*AttrVarHeap -> (!AttributeVar, !*AttrVarHeap) freshAttrVar name th_attrs # (info_ptr, th_attrs) = newPtr AVI_Empty th_attrs = ({av_name = name, av_info_ptr = info_ptr}, th_attrs) freshSymbolType :: String !SymbolType !*TypeHeaps -> (!SymbolType, !*TypeHeaps) freshSymbolType postfix st type_heaps # {st_vars, st_args, st_result, st_context, st_attr_vars, st_attr_env} = st # (new_st_vars, type_heaps) = subst_type_vars postfix st_vars type_heaps # (new_st_attr_vars, type_heaps) = subst_attr_vars postfix st_attr_vars type_heaps # (_, new_st_args, type_heaps) = substitute st_args type_heaps # (_, new_st_result, type_heaps) = substitute st_result type_heaps # (_, new_st_context, type_heaps) = substitute st_context type_heaps # (_, new_st_attr_env, type_heaps) = substitute st_attr_env type_heaps # new_st = { st & st_vars = new_st_vars , st_args = new_st_args , st_result = new_st_result , st_context = new_st_context , st_attr_vars = new_st_attr_vars , st_attr_env = new_st_attr_env } = (new_st, type_heaps) where subst_type_var postfix tv=:{tv_name={id_name}, tv_info_ptr} th_vars # (tv, th_vars) = freshTypeVar {id_name=id_name+++postfix, id_info=nilPtr} th_vars = (tv, writePtr tv_info_ptr (TVI_Type (TV tv)) th_vars) subst_type_vars postfix tvs type_heaps=:{th_vars} # (tvs, th_vars) = mapSt (subst_type_var postfix) tvs th_vars = (tvs, {type_heaps & th_vars = th_vars}) subst_attr_var postfix av=:{av_name={id_name}, av_info_ptr} th_attrs # (av, th_attrs) = freshAttrVar {id_name=id_name+++postfix, id_info=nilPtr} th_attrs = (av, writePtr av_info_ptr (AVI_Attr (TA_Var av)) th_attrs) subst_attr_vars postfix avs type_heaps=:{th_attrs} # (avs, th_attrs) = mapSt (subst_attr_var postfix) avs th_attrs = (avs, {type_heaps & th_attrs = th_attrs}) // all variables are taken afresh freshGenericType :: !GenericType !*TypeHeaps -> (!GenericType, !*TypeHeaps) freshGenericType gen_type=:{gt_type, gt_vars, gt_arity} type_heaps // set variables that have to be taken fresh, i.e. // both generic variables and non-variables # {st_vars} = gt_type # symbol_type = { gt_type & st_vars = gt_vars ++ st_vars } # (fresh_symbol_type, type_heaps) = freshSymbolType "" symbol_type type_heaps // split fresh variables into generic and non-generic variables # (fresh_gt_vars, st_vars) = splitAt gt_arity fresh_symbol_type.st_vars # fresh_gen_type = { gen_type & gt_vars = fresh_gt_vars, gt_type = {fresh_symbol_type & st_vars = st_vars}} = (fresh_gen_type, type_heaps) // Only generic variables are taken afresh // Non generic variables are supposed to be shared by // generic subtypes of a type freshGenericSubtype :: !String !GenericType !*TypeHeaps -> (!GenericType, !*TypeHeaps) freshGenericSubtype postfix gen_type=:{gt_vars, gt_type, gt_arity} type_heaps // set variables that have to be taken afresh, i.e. generic variables #! {st_vars} = gt_type #! symbol_type = {gt_type & st_vars = gt_vars} #! (fresh_symbol_type, type_heaps) = freshSymbolType postfix symbol_type type_heaps // restore non-generic variables #! fresh_gt_vars = fresh_symbol_type.st_vars #! fresh_gen_type = { gen_type & gt_vars = fresh_gt_vars, gt_type = {fresh_symbol_type & st_vars = st_vars}} = (fresh_gen_type, type_heaps) clearType :: Type !*TypeHeaps -> !*TypeHeaps clearType type th=:{th_vars} = {th & th_vars = performOnTypeVars initializeToTVI_Empty type th_vars} clearAType :: !AType !*TypeHeaps -> !*TypeHeaps clearAType type th=:{th_vars, th_attrs} #! th_vars = performOnTypeVars initializeToTVI_Empty type th_vars #! th_attrs = performOnAttrVars initializeToAVI_Empty type th_attrs = {th & th_vars = th_vars, th_attrs = th_attrs} clearSymbolType :: !SymbolType !*TypeHeaps -> !*TypeHeaps clearSymbolType {st_args, st_context, st_result} th #! th = foldSt clearAType st_args th #! th = foldSt clearType (flatten [tc_types \\ {tc_types} <- st_context]) th #! th = clearAType st_result th = th substituteInSymbolType :: !SymbolType !*TypeHeaps -> (!SymbolType, !*TypeHeaps) substituteInSymbolType st=:{st_args, st_result, st_attr_env, st_context} th #! (_, st_args, th) = substitute st.st_args th #! (_, st_result, th) = substitute st.st_result th #! (_, st_context, th) = substitute st.st_context th #! (_, st_attr_env, th) = substitute st.st_attr_env th #! st = { st & st_args = st_args, st_result = st_result, st_context = st_context, st_attr_env = st_attr_env } = (st, th) // sets ATV_Attribute in all variables setTypeVarAttrs :: !SymbolType !*TypeHeaps -> !*TypeHeaps setTypeVarAttrs {st_args, st_result} th=:{th_vars} #! th_vars = foldSt set_in_atype st_args th_vars #! th_vars = set_in_atype st_result th_vars = {th & th_vars = th_vars} where set_in_atype at th_vars = performOnTypeVars on_type_var at th_vars on_type_var ta tv=:{tv_info_ptr} th_vars = writePtr tv_info_ptr (TVI_Attribute ta) th_vars buildTypeApp :: !Index !CheckedTypeDef [AType] -> AType buildTypeApp td_module {td_name, td_arity, td_index} args # global_index = {glob_module = td_module, glob_object = td_index} # type_symb = MakeTypeSymbIdent global_index td_name (length args) = makeAType (TA type_symb args) TA_Multi buildPredefTypeApp :: !Int [AType] !PredefinedSymbols -> !AType buildPredefTypeApp predef_index args predefs # {pds_module, pds_def} = predefs.[predef_index] # pds_ident = predefined_idents.[predef_index] # global_index = {glob_module = pds_module, glob_object = pds_def} # type_symb = MakeTypeSymbIdent global_index pds_ident (length args) = makeAType (TA type_symb args) TA_Multi buildATypeISO x y predefs = buildPredefTypeApp PD_TypeISO [x, y] predefs buildATypeUNIT predefs = buildPredefTypeApp PD_TypeUNIT [] predefs buildATypePAIR x y predefs = buildPredefTypeApp PD_TypePAIR [x, y] predefs buildATypeEITHER x y predefs = buildPredefTypeApp PD_TypeEITHER [x, y] predefs buildATypeARROW x y predefs = buildPredefTypeApp PD_TypeARROW [x, y] predefs buildATypeCONS x predefs = buildPredefTypeApp PD_TypeCONS [x] predefs buildProductType :: ![AType] !PredefinedSymbols -> !AType buildProductType [] predefs = buildATypeUNIT predefs buildProductType [type] predefs = type buildProductType types predefs # (l,r) = splitAt ((length types) / 2) types = buildATypePAIR (buildProductType l predefs) (buildProductType r predefs) predefs //=================================== // Functions //=================================== makeFunction :: !DefinedSymbol !Index ![FreeVar] !Expression !(Optional SymbolType) ![FreeVar] !Index !Position -> FunDef makeFunction {ds_index, ds_arity, ds_ident} group_index arg_vars body_expr opt_sym_type local_vars main_dcl_module_n fun_pos | length arg_vars <> ds_arity = abort "length arg_vars <> ds_arity\n" = { fun_symb = ds_ident, fun_arity = ds_arity, fun_priority = NoPrio, fun_body = TransformedBody { tb_args = arg_vars, tb_rhs = body_expr }, fun_type = opt_sym_type, fun_pos = fun_pos, fun_kind = FK_Function cNameNotLocationDependent, fun_lifted = 0, fun_info = { fi_calls = [FunCall ind NotALevel \\ ind <- collectCalls main_dcl_module_n body_expr], fi_group_index = group_index, fi_def_level = NotALevel, fi_free_vars = [], fi_local_vars = local_vars, fi_dynamics = [], fi_properties = 0 } } newGroupIndex gs=:{gs_last_group} = (gs_last_group, {gs & gs_last_group = gs_last_group + 1}) newFunIndex gs=:{gs_last_fun} = (gs_last_fun, {gs & gs_last_fun = gs_last_fun + 1}) newFunAndGroupIndex gs=:{gs_last_fun, gs_last_group} = (gs_last_fun, gs_last_group, {gs & gs_last_fun = gs_last_fun + 1, gs_last_group = gs_last_group + 1}) addFunsAndGroups :: ![FunDef] ![Group] (!*GenericState) -> !*GenericState addFunsAndGroups new_fun_defs new_groups gs=:{gs_fun_defs, gs_groups, gs_first_fun, gs_last_fun, gs_first_group, gs_last_group,gs_main_dcl_module_n} # gs_fun_defs = add_funs new_fun_defs gs_fun_defs gs_first_fun gs_last_fun # gs_groups = add_groups new_groups gs_groups gs_first_group gs_last_group # (gs_groups, gs_fun_defs) = check_groups gs_first_group gs_groups gs_fun_defs = {gs & gs_fun_defs = gs_fun_defs, gs_groups = gs_groups} where add_funs new_fun_defs gs_fun_defs gs_first_fun gs_last_fun # n_gs_fun_defs = size gs_fun_defs # n_new_fun_defs = length new_fun_defs | n_new_fun_defs <> gs_last_fun - gs_first_fun = abort "error in number of fun_defs" # fun_defs = createArray (n_new_fun_defs + n_gs_fun_defs) (makeFunction EmptyDefinedSymbol NoIndex [] EE No [] gs_main_dcl_module_n NoPos) #! fun_defs = { fun_defs & [i] = gs_fun_defs . [i] \\ i <- [0..(n_gs_fun_defs - 1)]} #! fun_defs = { fun_defs & [i] = check_fun fun_def i \\ i <- [n_gs_fun_defs .. (n_gs_fun_defs + n_new_fun_defs - 1)] & fun_def <- new_fun_defs } = fun_defs add_groups new_groups gs_groups gs_first_group gs_last_group # n_gs_groups = size gs_groups # n_new_groups = length new_groups | n_new_groups <> gs_last_group - gs_first_group = abort "error in number of groups" # groups = createArray (n_gs_groups + n_new_groups) {group_members = []} #! groups = { groups & [i] = gs_groups . [i] \\ i <- [0..(n_gs_groups - 1)]} #! groups = { groups & [i] = group \\ i <- [n_gs_groups .. (n_gs_groups + n_new_groups - 1)] & group <- new_groups } = groups check_fun fun_def index = fun_def /* | fun_def.fun_index == index = fun_def = abort ("conflicting fun_indexes of " +++ fun_def.fun_symb.id_name +++ toString fun_def.fun_index +++ " and " +++ toString index) */ check_groups group_index groups funs | group_index == size groups = (groups, funs) # (group, groups) = groups ! [group_index] //---> ("check group " +++ toString group_index) # funs = check_group group_index group.group_members funs = check_groups (group_index + 1) groups funs check_group group_index [] funs = funs check_group group_index [fun_index:fun_indexes] funs # (fun, funs) = funs ! [fun_index] | fun.fun_info.fi_group_index == group_index = check_group group_index fun_indexes funs = abort ("inconsistent group " +++ toString group_index +++ ": " +++ toString fun_index +++ " and " +++ toString fun.fun_info.fi_group_index) buildIdFunction :: !DefinedSymbol Int !Ident !PredefinedSymbols !Index !*Heaps-> (!FunDef, !*Heaps) buildIdFunction def_sym group_index name predefs gs_main_dcl_module_n heaps # (arg_expr, arg_var, heaps) = buildVarExpr "x" heaps # fun_def = makeFunction def_sym group_index [arg_var] arg_expr No [] gs_main_dcl_module_n NoPos = (fun_def, heaps) buildUndefFunction :: !DefinedSymbol !Int !PredefinedSymbols !Index !*Heaps-> (!FunDef, !*Heaps) buildUndefFunction def_sym group_index predefs gs_main_dcl_module_n heaps # names = [ "x" +++ toString i \\ i <- [1 .. def_sym.ds_arity]] # (arg_vars, heaps) = mapSt build_free_var names heaps # (body_expr, heaps) = buildUndefFunApp [] predefs heaps //# (body_expr, heaps) = buildUNIT predefs heaps # fun_def = makeFunction def_sym group_index arg_vars body_expr No [] gs_main_dcl_module_n NoPos = (fun_def, heaps) where build_free_var :: !String !*Heaps -> (!FreeVar, !*Heaps) build_free_var name heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # var_name = { id_name = name, id_info = nilPtr } # free_var = { fv_def_level = NotALevel, fv_count = 0, fv_info_ptr = var_info_ptr, fv_name = var_name} = (free_var, {heaps & hp_var_heap = hp_var_heap}) //=================================== // Case patterns //=================================== buildPredefConsPattern :: !Int ![FreeVar] !Expression !PredefinedSymbols -> AlgebraicPattern buildPredefConsPattern predef_index vars expr predefs # {pds_module, pds_def} = predefs.[predef_index] # pds_ident = predefined_idents.[predef_index] # cons_def_symbol = { ds_ident = pds_ident, ds_arity = length vars, ds_index = pds_def } # pattern = { ap_symbol = {glob_module = pds_module, glob_object = cons_def_symbol}, ap_vars = vars, ap_expr = expr, ap_position = NoPos } = pattern buildUNITPattern expr predefs :== buildPredefConsPattern PD_ConsUNIT [] expr predefs buildLEFTPattern var expr predefs :== buildPredefConsPattern PD_ConsLEFT [var] expr predefs buildRIGHTPattern var expr predefs :== buildPredefConsPattern PD_ConsRIGHT [var] expr predefs buildPAIRPattern var1 var2 expr predefs :== buildPredefConsPattern PD_ConsPAIR [var1, var2] expr predefs buildCONSPattern cons_info_var cons_arg_var expr predefs :== buildPredefConsPattern PD_ConsCONS [cons_info_var, cons_arg_var] expr predefs //=================================== // Expressions //=================================== buildConsApp :: !Index DefinedSymbol ![Expression] !*Heaps -> (!Expression, !*Heaps) buildConsApp cons_mod {ds_ident, ds_index, ds_arity} arg_exprs heaps=:{hp_expression_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # cons_glob = {glob_module = cons_mod, glob_object = ds_index} # expr = App { app_symb = { symb_name = ds_ident, symb_kind = SK_Constructor cons_glob }, app_args = arg_exprs, app_info_ptr = expr_info_ptr} # heaps = { heaps & hp_expression_heap = hp_expression_heap } = (expr, heaps) buildFunApp :: !Index DefinedSymbol ![Expression] !*Heaps -> (!Expression, !*Heaps) buildFunApp fun_mod {ds_ident, ds_index, ds_arity} arg_exprs heaps=:{hp_expression_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # fun_glob = {glob_module = fun_mod, glob_object = ds_index} # expr = App { app_symb = { symb_name = ds_ident, symb_kind = SK_Function fun_glob }, app_args = arg_exprs, app_info_ptr = expr_info_ptr} # heaps = { heaps & hp_expression_heap = hp_expression_heap } = (expr, heaps) buildGenericApp :: !Index !DefinedSymbol !TypeKind ![Expression] !*Heaps -> (!Expression, !*Heaps) buildGenericApp module_index {ds_ident, ds_index} kind arg_exprs heaps=:{hp_expression_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # glob_index = {glob_module = module_index, glob_object = ds_index} # expr = App { app_symb = { symb_name = ds_ident, symb_kind = SK_Generic glob_index kind }, app_args = arg_exprs, app_info_ptr = expr_info_ptr} # heaps = { heaps & hp_expression_heap = hp_expression_heap } = (expr, heaps) buildCaseExpr :: Expression CasePatterns !*Heaps -> (!Expression, !*Heaps) buildCaseExpr case_arg case_alts heaps=:{hp_expression_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # expr = Case { case_expr = case_arg, case_guards = case_alts, case_default = No, case_ident = No, case_info_ptr = expr_info_ptr, // RWS ... case_explicit = False, // ... RWS case_default_pos = NoPos } # heaps = { heaps & hp_expression_heap = hp_expression_heap} = (expr, heaps) buildCaseUNITExpr :: !Expression !Expression !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildCaseUNITExpr arg_expr body_expr predefs heaps # unit_pat = buildUNITPattern body_expr predefs # {pds_module, pds_def} = predefs.[PD_TypeUNIT] # case_patterns = AlgebraicPatterns {glob_module = pds_module, glob_object = pds_def} [unit_pat] = buildCaseExpr arg_expr case_patterns heaps buildCaseEITHERExpr :: !Expression (!FreeVar, !Expression) (!FreeVar, !Expression) !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildCaseEITHERExpr arg_expr (left_var, left_expr) (right_var, right_expr) predefs heaps # left_pat = buildLEFTPattern left_var left_expr predefs # right_pat = buildRIGHTPattern right_var right_expr predefs # {pds_module, pds_def} = predefs.[PD_TypeEITHER] # case_patterns = AlgebraicPatterns {glob_module = pds_module, glob_object = pds_def} [left_pat, right_pat] = buildCaseExpr arg_expr case_patterns heaps buildCasePAIRExpr :: !Expression !FreeVar !FreeVar !Expression !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildCasePAIRExpr arg_expr var1 var2 body_expr predefs heaps # pair_pat = buildPAIRPattern var1 var2 body_expr predefs # {pds_module, pds_def} = predefs.[PD_TypePAIR] # case_patterns = AlgebraicPatterns {glob_module = pds_module, glob_object = pds_def} [pair_pat] = buildCaseExpr arg_expr case_patterns heaps buildCaseCONSExpr :: !Expression !FreeVar !FreeVar !Expression !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildCaseCONSExpr arg_expr cons_info_var arg_var body_expr predefs heaps # cons_pat = buildCONSPattern cons_info_var arg_var body_expr predefs # {pds_module, pds_def} = predefs.[PD_TypeCONS] # case_patterns = AlgebraicPatterns {glob_module = pds_module, glob_object = pds_def} [cons_pat] = buildCaseExpr arg_expr case_patterns heaps buildPredefConsApp :: !Int [Expression] !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildPredefConsApp predef_index args predefs heaps=:{hp_expression_heap} # {pds_module, pds_def} = predefs.[predef_index] # pds_ident = predefined_idents.[predef_index] # global_index = {glob_module = pds_module, glob_object = pds_def} # symb_ident = { symb_name = pds_ident, symb_kind = SK_Constructor global_index } # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # app = App {app_symb = symb_ident, app_args = args, app_info_ptr = expr_info_ptr} = (app, {heaps & hp_expression_heap = hp_expression_heap}) buildISO to_expr from_expr predefs heaps :== buildPredefConsApp PD_ConsISO [to_expr, from_expr] predefs heaps buildUNIT predefs heaps :== buildPredefConsApp PD_ConsUNIT [] predefs heaps buildPAIR x y predefs heaps :== buildPredefConsApp PD_ConsPAIR [x, y] predefs heaps buildLEFT x predefs heaps :== buildPredefConsApp PD_ConsLEFT [x] predefs heaps buildRIGHT x predefs heaps :== buildPredefConsApp PD_ConsRIGHT [x] predefs heaps buildARROW x y predefs heaps :== buildPredefConsApp PD_ConsARROW [x, y] predefs heaps buildCONS cons_info arg predefs heaps :== buildPredefConsApp PD_ConsCONS [cons_info, arg] predefs heaps buildPredefFunApp :: !Int [Expression] !PredefinedSymbols !*Heaps -> (!Expression, !*Heaps) buildPredefFunApp predef_index args predefs heaps=:{hp_expression_heap} # {pds_module, pds_def} = predefs.[predef_index] # pds_ident = predefined_idents.[predef_index] # global_index = {glob_module = pds_module, glob_object = pds_def} # symb_ident = { symb_name = pds_ident, symb_kind = SK_Function global_index } # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # app = App {app_symb = symb_ident, app_args = args, app_info_ptr = expr_info_ptr} = (app, {heaps & hp_expression_heap = hp_expression_heap}) buildUndefFunApp args predefs heaps :== buildPredefFunApp PD_undef args predefs heaps buildIsomapArrowApp x y predefs heaps :== buildPredefFunApp PD_isomap_ARROW_ [x,y] predefs heaps buildIsomapIdApp predefs heaps :== buildPredefFunApp PD_isomap_ID [] predefs heaps buildIsoToSelectionExpr :: !Expression !PredefinedSymbols -> Expression buildIsoToSelectionExpr record_expr predefs # {pds_module, pds_def} = predefs . [PD_iso_to] # pds_ident = predefined_idents . [PD_iso_to] # selector = { glob_module = pds_module, glob_object = {ds_ident = pds_ident, ds_index = pds_def, ds_arity = 1}} = Selection NormalSelector record_expr [RecordSelection selector 0] buildIsoFromSelectionExpr :: !Expression !PredefinedSymbols -> Expression buildIsoFromSelectionExpr record_expr predefs # {pds_module, pds_def} = predefs . [PD_iso_from] # pds_ident = predefined_idents . [PD_iso_from] # selector = { glob_module = pds_module, glob_object = {ds_ident = pds_ident, ds_index = pds_def, ds_arity = 1}} = Selection NormalSelector record_expr [RecordSelection selector 1] buildVarExpr :: !String !*Heaps -> (!Expression, !FreeVar, !*Heaps) buildVarExpr name heaps=:{hp_var_heap, hp_expression_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # var_name = { id_name = name, id_info = nilPtr } # fv = { fv_def_level = NotALevel, fv_count = 1, fv_info_ptr = var_info_ptr, fv_name = var_name} # var = Var {var_name = var_name, var_expr_ptr = expr_info_ptr, var_info_ptr = var_info_ptr } # hp_var_heap = writePtr var_info_ptr (VI_Expression var) hp_var_heap # heaps = { heaps & hp_var_heap = hp_var_heap, hp_expression_heap = hp_expression_heap } = (var, fv, heaps) buildVarExprs :: ![String] !*Heaps -> (![Expression], [FreeVar], !*Heaps) buildVarExprs [] heaps = ([], [], heaps) buildVarExprs [name:names] heaps # (expr, var, heaps) = buildVarExpr name heaps # (exprs, vars, heaps) = buildVarExprs names heaps = ([expr:exprs], [var:vars], heaps) buildFreeVar :: !String !*Heaps -> (!FreeVar, !*Heaps) buildFreeVar name heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # var_name = { id_name = name, id_info = nilPtr } # var = { fv_def_level = NotALevel, fv_count = 1, fv_info_ptr = var_info_ptr, fv_name = var_name} = (var, {heaps & hp_var_heap = hp_var_heap}) buildFreeVar0 :: !String !*Heaps -> (!FreeVar, !*Heaps) buildFreeVar0 name heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap # var_name = { id_name = name, id_info = nilPtr } # var = { fv_def_level = NotALevel, fv_count = 0, fv_info_ptr = var_info_ptr, fv_name = var_name} = (var, {heaps & hp_var_heap = hp_var_heap}) buildFreeVars :: ![String] !*Heaps -> (![FreeVar], !*Heaps) buildFreeVars names heaps = mapSt buildFreeVar names heaps // create expression from a variable buildBoundVarExpr :: !FreeVar !*Heaps -> (!Expression, !FreeVar, !*Heaps) buildBoundVarExpr free_var=:{fv_info_ptr, fv_name, fv_count} heaps=:{hp_expression_heap, hp_var_heap} # (expr_info_ptr, hp_expression_heap) = newPtr EI_Empty hp_expression_heap # expr = Var {var_name = fv_name, var_expr_ptr = expr_info_ptr, var_info_ptr = fv_info_ptr } # hp_var_heap = writePtr fv_info_ptr (VI_Expression expr) hp_var_heap # heaps = { heaps & hp_var_heap = hp_var_heap, hp_expression_heap = hp_expression_heap } = (expr, {free_var & fv_count = fv_count + 1}, heaps) buildBoundVarExprs :: ![FreeVar] !*Heaps -> (![Expression], ![FreeVar], !*Heaps) buildBoundVarExprs [] heaps = ([], [], heaps) buildBoundVarExprs [free_var:free_vars] heaps # (expr, free_var, heaps) = buildBoundVarExpr free_var heaps # (exprs, free_vars, heaps) = buildBoundVarExprs free_vars heaps = ([expr:exprs], [free_var:free_vars], heaps) copyVar :: FreeVar !*Heaps -> (!FreeVar, !*Heaps) copyVar var heaps=:{hp_var_heap} # (var_info_ptr, hp_var_heap) = newPtr VI_Empty hp_var_heap = ({var & fv_info_ptr = var_info_ptr}, {heaps & hp_var_heap = hp_var_heap}) //---> ("copyVar", var, ptrToInt var_info_ptr) copyVars vars heaps = mapSt copyVar vars heaps setVarInfo var=:{fv_info_ptr} var_info heaps=:{hp_var_heap} # hp_var_heap = writePtr fv_info_ptr var_info hp_var_heap = {heaps & hp_var_heap = hp_var_heap} setVarInfos vars var_infos heaps = fold2St setVarInfo vars var_infos heaps clearVarInfos vars heaps = setVarInfos vars (repeatn (length vars) VI_Empty) heaps copyExpr :: !Expression !*Heaps -> (!Expression, !*Heaps) copyExpr expr heaps=:{hp_var_heap, hp_expression_heap} #! state = { us_var_heap = hp_var_heap , us_symbol_heap = hp_expression_heap , us_opt_type_heaps = No , us_cleanup_info = [] , us_local_macro_functions = No } #! info = { ui_handle_aci_free_vars = LeaveThem , ui_convert_module_n = -1 , ui_conversion_table = No } #! (expr, {us_var_heap, us_symbol_heap}) = unfold expr info state = (expr, {heaps & hp_var_heap = us_var_heap, hp_expression_heap = us_symbol_heap}) //---> ("copy Expr") mapExprSt :: !(Expression -> w:st -> u:(Expression, w:st)) !Expression w:st -> v:(Expression, w:st), [v<=w,u<=v] mapExprSt f (App app=:{app_args}) st # (app_args, st) = mapSt (mapExprSt f) app_args st = f (App { app & app_args = app_args }) st mapExprSt f (Let lad=:{let_lazy_binds, let_strict_binds, let_expr}) st # (let_lazy_binds, st) = mapSt map_bind let_lazy_binds st # (let_strict_binds, st) = mapSt map_bind let_strict_binds st # (let_expr, st) = mapExprSt f let_expr st # lad = { lad & let_expr = let_expr , let_lazy_binds = let_lazy_binds , let_strict_binds = let_strict_binds } = f (Let lad) st where map_bind b=:{lb_src} st # (lb_src, st) = mapExprSt f lb_src st = ({b & lb_src = lb_src}, st) mapExprSt f (Selection a expr b) st # (expr, st) = mapExprSt f expr st = f (Selection a expr b) st mapExprSt f (Update e1 x e2) st # (e1, st) = mapExprSt f e1 st # (e2, st) = mapExprSt f e2 st = f (Update e1 x e2) st mapExprSt f (RecordUpdate x expr binds) st # (expr, st) = mapExprSt f expr st # (binds, st) = mapSt map_bind binds st = f (RecordUpdate x expr binds) st where map_bind b=:{bind_src} st # (bind_dst, st) = mapExprSt f bind_src st = ({b & bind_src = bind_src}, st) mapExprSt f (TupleSelect x y expr) st # (expr, st) = mapExprSt f expr st = f (TupleSelect x y expr) st mapExprSt f (Conditional cond=:{if_cond, if_then, if_else}) st # (if_cond, st) = mapExprSt f if_cond st # (if_then, st) = mapExprSt f if_then st # (if_else, st) = case if_else of (Yes x) # (x, st) = mapExprSt f x st -> (Yes x, st) No -> (No, st) = f (Conditional {cond & if_cond = if_cond, if_then = if_then, if_else = if_else}) st mapExprSt f (MatchExpr y expr) st # (expr, st) = mapExprSt f expr st = f (MatchExpr y expr) st mapExprSt f (DynamicExpr dyn=:{dyn_expr}) st # (dyn_expr, st) = mapExprSt f dyn_expr st = f (DynamicExpr {dyn& dyn_expr = dyn_expr}) st mapExprSt f (Case c=:{case_expr, case_guards, case_default=case_default}) st # (case_expr, st) = mapExprSt f case_expr st # (case_guards, st) = map_patterns case_guards st # (case_default, st) = case case_default of (Yes x) # (x, st) = mapExprSt f x st -> (Yes x, st) No -> (No, st) # new_case = {c & case_expr=case_expr, case_guards=case_guards, case_default=case_default} = f (Case new_case) st where map_patterns (AlgebraicPatterns index pats) st # (pats, st) = mapSt map_alg_pattern pats st = (AlgebraicPatterns index pats, st) map_patterns (BasicPatterns bt pats) st # (pats, st) = mapSt map_basic_pattern pats st = (BasicPatterns bt pats, st) map_patterns (DynamicPatterns pats) st # (pats, st) = mapSt map_dyn_pattern pats st = (DynamicPatterns pats, st) map_alg_pattern pat=:{ap_expr} st # (ap_expr, st) = mapExprSt f ap_expr st = ({pat & ap_expr = ap_expr}, st) map_basic_pattern pat=:{bp_expr} st # (bp_expr, st) = mapExprSt f bp_expr st = ({pat & bp_expr = bp_expr}, st) map_dyn_pattern pat=:{dp_rhs} st # (dp_rhs, st) = mapExprSt f dp_rhs st = ({pat & dp_rhs = dp_rhs}, st) mapExprSt f expr st = f expr st copyFunDef :: !FunDef !Index !Index !*Heaps -> (!FunDef, !*Heaps) copyFunDef fun_def=:{fun_symb,fun_arity,fun_body,fun_info} fun_index group_index gs_heaps # (TransformedBody {tb_args, tb_rhs}) = fun_body # (fresh_arg_vars, gs_heaps) = copy_vars tb_args gs_heaps # (copied_rhs, gs_heaps) = copyExpr tb_rhs gs_heaps # (copied_rhs, fresh_arg_vars, fresh_local_vars, gs_heaps) = collect_local_vars copied_rhs fresh_arg_vars gs_heaps # gs_heaps = clearVarInfos tb_args gs_heaps # fun_def = { fun_def // & fun_index = fun_index //, fun_symb = makeIdent "zzzzzzzzzzzz" & fun_body = TransformedBody { tb_args = fresh_arg_vars, tb_rhs = copied_rhs } , fun_info = { fun_info & fi_group_index = group_index , fi_local_vars = fresh_local_vars } } = (fun_def, gs_heaps) where copy_vars vars heaps # (fresh_vars, heaps) = copyVars vars heaps # infos = [VI_Variable fv_name fv_info_ptr\\ {fv_name,fv_info_ptr} <- fresh_vars] # heaps = setVarInfos vars infos heaps = (fresh_vars, heaps) collect_local_vars body_expr fun_arg_vars heaps=:{hp_var_heap, hp_expression_heap} # dummy_pds = {pds_module=NoIndex,pds_def=NoIndex} #! cs = { cos_error = {ea_file = stderr, ea_ok = True, ea_loc=[]} , cos_var_heap = hp_var_heap , cos_symbol_heap = hp_expression_heap , cos_predef_symbols_for_transform = { predef_alias_dummy=dummy_pds, predef_and=dummy_pds, predef_or=dummy_pds } } # (body_expr, fun_arg_vars, local_vars, {cos_symbol_heap, cos_var_heap}) = determineVariablesAndRefCounts fun_arg_vars body_expr cs # heaps = { heaps & hp_var_heap = cos_var_heap, hp_expression_heap = cos_symbol_heap } = (body_expr, fun_arg_vars, local_vars, heaps) // collect functions called in an expression collectCalls :: !Index !Expression -> [Index] collectCalls current_module expr # symbidents = collect_expr_calls expr [] = removeDup [glob_object \\ {symb_kind=SK_Function {glob_module,glob_object}} <- symbidents | glob_module == current_module] where collect_expr_calls (App app) rest = [app.app_symb:foldr collect_expr_calls rest app.app_args] collect_expr_calls (expr@exprs) rest = collect_expr_calls expr (foldr collect_expr_calls rest exprs) collect_expr_calls (Let li) rest = collect_expr_calls li.let_expr (foldr collect_letbind_calls (foldr collect_letbind_calls rest li.let_lazy_binds) li.let_strict_binds) collect_expr_calls (Case ci) rest = collect_expr_calls ci.case_expr (collect_casepatterns_calls ci.case_guards (foldOptional id collect_expr_calls ci.case_default rest)) collect_expr_calls (Selection optgd expr sels) rest = collect_expr_calls expr (foldr collect_sel_calls rest sels) collect_expr_calls (Update expr1 sels expr2) rest = collect_expr_calls expr1 (foldr collect_sel_calls (collect_expr_calls expr2 rest) sels) collect_expr_calls (RecordUpdate gds expr binds) rest = collect_expr_calls expr (foldr collect_bind_calls rest binds) collect_expr_calls (TupleSelect ds i expr) rest = collect_expr_calls expr rest //collect_expr_calls (Lambda fvs expr) rest = collect_expr_calls expr rest collect_expr_calls (Conditional cond) rest = collect_expr_calls cond.if_cond (collect_expr_calls cond.if_then (foldOptional id collect_expr_calls cond.if_else rest)) collect_expr_calls (MatchExpr gds expr) rest = collect_expr_calls expr rest collect_expr_calls (DynamicExpr dyn) rest = collect_expr_calls dyn.dyn_expr (collect_tce_calls dyn.dyn_type_code rest) //collect_expr_calls (TypeCase tc) rest = collect_expr_calls tc.type_case_dynamic (foldr collect_dp_calls (foldOptional id collect_expr_calls rest) tc.type_case_patterns) collect_expr_calls (TypeCodeExpression tce) rest = collect_tce_calls tce rest collect_expr_calls _ rest = rest collect_letbind_calls lb rest = collect_expr_calls lb.lb_src rest collect_casepatterns_calls (AlgebraicPatterns gi aps) rest = foldr collect_ap_calls rest aps collect_casepatterns_calls (BasicPatterns gi bps) rest = foldr collect_bp_calls rest bps collect_casepatterns_calls (DynamicPatterns dps) rest = foldr collect_dp_calls rest dps collect_casepatterns_calls NoPattern rest = rest collect_ap_calls ap rest = collect_expr_calls ap.ap_expr rest collect_bp_calls bp rest = collect_expr_calls bp.bp_expr rest collect_dp_calls dp rest = collect_tce_calls dp.dp_type_code (collect_expr_calls dp.dp_rhs rest) collect_sel_calls (RecordSelection gds i) rest = rest collect_sel_calls (ArraySelection gds eip expr) rest = collect_expr_calls expr rest collect_sel_calls (DictionarySelection bv sels sip expr) rest = foldr collect_sel_calls (collect_expr_calls expr rest) sels collect_bind_calls b rest = collect_expr_calls b.bind_src rest collect_tce_calls (TCE_Constructor i tces) rest = foldr collect_tce_calls rest tces collect_tce_calls (TCE_Selector sels vip) rest = foldr collect_sel_calls rest sels collect_tce_calls _ rest = rest makeIdent :: String -> Ident makeIdent str = {id_name = str, id_info = nilPtr} makeIntExpr :: Int -> Expression makeIntExpr value = BasicExpr (BVI (toString value)) makeStringExpr :: String !PredefinedSymbols -> Expression makeStringExpr str predefs #! {pds_module, pds_def} = predefs.[PD_StringType] #! pds_ident = predefined_idents.[PD_StringType] #! type_symb = MakeTypeSymbIdent { glob_module = pds_module, glob_object = pds_def } pds_ident 0 = BasicExpr (BVS str) makeListExpr :: [Expression] !PredefinedSymbols !*Heaps -> (Expression, !*Heaps) makeListExpr [] predefs heaps = buildPredefConsApp PD_NilSymbol [] predefs heaps makeListExpr [expr:exprs] predefs heaps # (list_expr, heaps) = makeListExpr exprs predefs heaps = buildPredefConsApp PD_ConsSymbol [expr, list_expr] predefs heaps foldOptional no yes No = no foldOptional no yes (Yes x) = yes x transpose [] = [] transpose [[] : xss] = transpose xss transpose [[x:xs] : xss] = [[x : [hd l \\ l <- xss]] : transpose [xs : [ tl l \\ l <- xss]]] unzip3 [] = ([], [], []) unzip3 [(x1,x2,x3):xs] # (x1s, x2s, x3s) = unzip3 xs = ([x1:x1s], [x2:x2s], [x3:x3s]) reportError name pos msg error = checkErrorWithIdentPos (newPosition name pos) msg error (--) infixl 5 :: u:[a] .[a] -> u:[a] | Eq a (--) x y = removeMembers x y